cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Marko Riedel

Marko Riedel's wiki page.

Marko Riedel has authored 175 sequences. Here are the ten most recent ones:

A386556 Number of 2-colorings of an 6 X 6 X 6 grid / cube, up to rotational symmetry, by the number of black cells.

Original entry on oeis.org

1, 11, 1013, 69045, 3677374, 155822419, 5479820520, 164392285865, 4294750355129, 99256405950180, 2054607644379763, 38477196919023712, 657318781413490584, 10314848558604181280, 149565304110190970723, 2014146095209708440612, 25302710321203873065217, 297678944953786351579885, 3291006113657215317985320
Offset: 0

Author

Marko Riedel, Jul 25 2025

Keywords

Comments

This sequence is finite, having 6^3+1 terms. The cycle index Z(C) of the permutation group C of the rotations of the cube acting on the cells is given by 1/24 (a[1]^216 + 8 * a[1]^6 * a[3]^70 + 9 * a[2]^108 + 6 * a[4]^54).

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 35.

Crossrefs

Formula

a(n) = [z^n] Z(C; 1+z).

A386555 Number of 2-colorings of an 5 X 5 X 5 grid, up to rotational symmetry, by the number of black cells.

Original entry on oeis.org

1, 10, 355, 13375, 404775, 9775852, 195462780, 3322598660, 49007581605, 637095486150, 7390299421967, 77262191948715, 733990748643925, 6380073195502170, 51040584989484940, 377700327297519628, 2596689746386426870, 16649363658225874915, 99896181927621097005
Offset: 0

Author

Marko Riedel, Jul 25 2025

Keywords

Comments

This sequence is finite, having 5^3+1 terms. The cycle index Z(C) of the permutation group C of the rotations of the cube acting on the cells is given by 1/24 ( a[1]^125 + 8 * a[1]^5 * a[3]^40 + 9 * a[1]^5 * a[2]^60 + 6 * a[1]^5 * a[4]^30).

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 35.

Crossrefs

Formula

a(n) = [z^n] Z(C; 1+z).

A386554 Number of 2-colorings of an 4 X 4 X 4 grid, up to rotational symmetry, by the number of black cells.

Original entry on oeis.org

1, 4, 98, 1744, 26691, 317728, 3125882, 25884268, 184437452, 1147524988, 6311461050, 30983159856, 136842622391, 547369124016, 1993988770170, 6646625005908, 20355293012087, 57473757334488, 150070376844312, 363328255291128, 817488598547832, 1712833203324840
Offset: 0

Author

Marko Riedel, Jul 25 2025

Keywords

Comments

This sequence is finite, having 4^3+1 terms. The cycle index Z(C) of the permutation group C of the rotations of the cube acting on the cells is given by 1/24 (a[1]^64 + 8 * a[1]^4 * a[3]^20 + 9 * a[2]^32 + 6 * a[4]^16).

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 35.

Crossrefs

Formula

a(n) = [z^n] Z(C; 1+z).

A386553 Number of 2-colorings of an 3 X 3 X 3 grid, up to rotational symmetry, by the number of black cells.

Original entry on oeis.org

1, 4, 22, 139, 779, 3455, 12507, 37303, 92968, 195963, 352433, 544382, 725612, 837184, 837184, 725612, 544382, 352433, 195963, 92968, 37303, 12507, 3455, 779, 139, 22, 4, 1
Offset: 0

Author

Marko Riedel, Jul 25 2025

Keywords

Comments

This sequence is finite, having 3^3+1 terms. The cycle index Z(C) of the permutation group C of the rotations of the cube acting on the cells is given by 1/24 (a[1]^27 + 8 * a[1]^3 * a[3]^8 + 9 * a[1]^3 * a[2]^12 + 6 * a[1]^3*a[4]^6).

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 35.

Crossrefs

Formula

a(n) = [z^n] Z(C; 1+z).

A380401 Triangle read by rows: T(n,k) is the number of necklace permutations of a multiset whose multiplicities are given by the k-th partition of n in graded reflected lexicographic order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 3, 2, 1, 1, 24, 12, 6, 4, 2, 1, 1, 120, 60, 30, 16, 20, 10, 4, 5, 3, 1, 1, 720, 360, 180, 90, 120, 60, 30, 20, 30, 15, 5, 6, 3, 1, 1, 5040, 2520, 1260, 630, 318, 840, 420, 210, 140, 70, 210, 105, 54, 35, 10, 42, 21, 7, 7, 4, 1, 1, 40320, 20160, 10080, 5040, 2520, 6720, 3360, 1680, 840, 1120, 560, 188, 1680, 840, 420, 280, 140, 70, 336, 168, 84, 56, 14, 56, 28, 10, 8, 4, 1, 1
Offset: 1

Author

Marko Riedel, Jan 23 2025

Keywords

Comments

See A318810 for a definition of necklace permutation.

Examples

			The ordering of the partitions used here is graded reflected lexicographic illustrated below with n=5:
  1,1,1,1,1 => 24
  1,1,1,2 => 12
  1,2,2 => 6
  1,1,3 => 4
  2,3 => 2
  1,4 => 1
  5 => 1
Table begins:
  1
  1,1
  2,1,1
  6,3,2,1,1
  24,12,6,4,2,1,1
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, pages 36-37, 42-43.

Crossrefs

Cf. A000041 (row lengths), A072605 (row sums), A080576 (graded reflected lexicographic order), A212359 (similar triangle for Abramowitz-Stegun order), A318810, A334434, A214609 (up to rotations and reflections).

Programs

  • PARI
    C(sig)={my(n=vecsum(sig)); sumdiv(gcd(sig), d, eulerphi(d)*(n/d)!/prod(i=1, #sig, (sig[i]/d)!))/n}
    Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)]))} \\ Andrew Howroyd, Jan 23 2025

Formula

For a distribution of colors n1+n2+...+nm = n the number of necklaces is (1/n)*Sum_{d|gcd(n1,n2,...,nm)} phi(d) (n/d)!/Prod_{q=1..m} (nq/d)!
T(n,k) = A318810(A334434(n,k)).

A376808 Number of non-isomorphic colorings of a toroidal n X n grid using any number of swappable colors.

Original entry on oeis.org

1, 9, 2387, 655089857, 185543613289205809, 106103186941524316132396201360, 218900758256599151027392153440612298654753249, 2689595989958732045849530682270318547733917269644639109073775285
Offset: 1

Author

Marko Riedel, Oct 04 2024

Keywords

Comments

Two colorings are equivalent if there is a permutation of the colors that takes one to the other in addition to translational symmetries on the torus (Power Group Enumeration). The maximum number of colors is n * n.

Examples

			For the 2x2 we find
  +-+-+   +-+-+   +-+-+   +-+-+   +-+-+
  |X|X|   |X|X|   |X|X|   |X| |   |X| |
  +-+-+   +-+-+   +-+-+   +-+-+   +-+-+
  |X|X|   |X| |   | | |   |X| |   | |X|
  +-+-+   +-+-+   +-+-+   +-+-+   +-+-+
  +-+-+   +-+-+   +-+-+   +-+-+
  |X|Y|   |X| |   |X| |   |X|Y|
  +-+-+   +-+-+   +-+-+   +-+-+
  | | |   |Y| |   | |Y|   |Z| |
  +-+-+   +-+-+   +-+-+   +-+-+
so a(2) = 9.
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Main diagonal of A295197.

Formula

a(n) = Sum_{Q=1..n^2} (1/(n^2*Q!))*(Sum_{sigma in S_Q} Sum_{d|n} Sum_{f|n} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(n/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..Q} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.

A376748 Number of non-isomorphic colorings of a toroidal n X n grid using exactly three swappable colors.

Original entry on oeis.org

0, 3, 345, 447156, 5647919665, 694881637942816, 813943290958393433377, 8941884948534360647405572800, 912400181570021638669407666368774097, 858962534553352212055863239761275173880606456, 7425662396340624836407113113710889289196975262054947345, 587417576454184723055270940786413231085263155884260701824558793960
Offset: 1

Author

Marko Riedel, Oct 03 2024

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Main diagonal of A294792.

Formula

a(n) = (1/(n^2*3!))*(Sum_{sigma in S_3} Sum_{d|n} Sum_{f|n} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(n/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..3} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.

A376749 Number of non-isomorphic colorings of a toroidal n X n grid using exactly four swappable colors.

Original entry on oeis.org

0, 1, 874, 10741819, 1870851589562, 5465007068038102643, 269482732023591671431784330, 221537990355601030571170905795094315, 3007205014171762201565124875608675533096268906, 669557518440386985607930852942771727146772232484581602227, 2433673642945425535196140161775877796522974318753784273286700783313050
Offset: 1

Author

Marko Riedel, Oct 03 2024

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Main diagonal of A294793.

Formula

a(n) = (1/(n^2*4!))*(Sum_{sigma in S_4} Sum_{d|n} Sum_{f|n} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(n/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..4} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.

A376747 Number of non-isomorphic colorings of a toroidal n X n grid using exactly two swappable colors.

Original entry on oeis.org

0, 4, 31, 2107, 671103, 954459519, 5744387279871, 144115188277194943, 14925010118699132241919, 6338253001141180784480847871, 10985355337065420437221545952731135, 77433143050453552574875182200691073835007, 2213872302702432822841084717014014514981767643135, 256208234097415541381052629523530965709132732687965552639
Offset: 1

Author

Marko Riedel, Oct 03 2024

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Main diagonal of A294791.

Formula

a(n) = (1/(n^2*2!))*(Sum_{sigma in S_2} Sum_{d|n} Sum_{f|n} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(n/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..2} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.

A368213 Triangular array read by rows: Number of permutations of [n] that factor into exactly k-cycles, ordered by n (rows) and divisors k of n (columns).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 3, 0, 6, 1, 0, 0, 0, 24, 1, 15, 40, 0, 0, 120, 1, 0, 0, 0, 0, 0, 720, 1, 105, 0, 1260, 0, 0, 0, 5040, 1, 0, 2240, 0, 0, 0, 0, 0, 40320, 1, 945, 0, 0, 72576, 0, 0, 0, 0, 362880, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 1, 10395, 246400, 1247400, 0, 6652800, 0, 0, 0, 0, 0, 39916800
Offset: 1

Author

Marko Riedel, Dec 17 2023

Keywords

Examples

			Row n=6 is 1, 15, 40, 120 because there is one permutation of [6] consisting of six fixed points, there are 15 permutations consisting of three transpositions, there are forty permutations consisting of two three-cycles and there are one hundred and twenty permutations consisting of just one six-cycle (6!/6).
Triangular array starts:
[ 1] 1;
[ 2] 1,   1;
[ 3] 1,   0,    2;
[ 4] 1,   3,    0,    6;
[ 5] 1,   0,    0,    0,    24;
[ 6] 1,  15,   40,    0,     0, 120;
[ 7] 1,   0,    0,    0,     0,   0, 720;
[ 8] 1, 105,    0, 1260,     0,   0,   0, 5040;
[ 9] 1,   0, 2240,    0,     0,   0,   0,    0, 40320;
[10] 1, 945,    0,    0, 72576,   0,   0,    0,     0, 362880;
		

References

  • P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009, pages 120-122.

Crossrefs

Cf. A005225 (row sums), A008290.
Cf. A123023 (column 2), A052502 (column 3), A060706 (column 4).

Programs

  • Maple
    T:= (n, m)-> `if`(irem(n,m)=0, n!/m^(n/m)/(n/m)!, 0):
    seq(seq(T(n, m), m = 1..n), n=1..15);
  • Mathematica
    A368213[n_,k_]:=If[Divisible[n,k],n!/(k^(n/k)(n/k)!),0];
    Table[A368213[n,k],{n,15},{k,n}] (* Paolo Xausa, Dec 18 2023 *)
  • SageMath
    def T(n, d): return factorial(n) // (d ** (n//d) * factorial(n//d))
    for n in range(1, 19):
        print([T(n, d) if n % d == 0 else 0 for d in range(1, n+1)])
    # Peter Luschny, Dec 17 2023

Formula

T(n, k) = n! / ( k^(n/k) * (n/k)! ) if k divides n otherwise 0.