cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A295197 Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using any number of swappable colors, 1 <= k <= n.

Original entry on oeis.org

1, 2, 9, 3, 43, 2387, 7, 587, 351773, 655089857, 12, 11703, 92197523, 2586209749712, 185543613289205809, 43, 352902, 37893376167, 18581620064907130, 28224967150633208580385, 106103186941524316132396201360, 127, 13639372, 22612848403571, 220019264470242220839, 8045720086273150473238405274, 851013076163633746725692124186472539, 218900758256599151027392153440612298654753249
Offset: 1

Views

Author

Marko Riedel, Nov 16 2017

Keywords

Comments

Two colorings are equivalent if there is a permutation of the colors that takes one to the other in addition to translational symmetries on the torus. (Power Group Enumeration.) Maximum number of colors is n * k.

Examples

			The two-by-two with swappable colors has one monochrome coloring, four colorings with two colors, three colorings with three colors (determined by the color that appears twice) and one coloring with four colors.
Triangle begins:
   1;
   2,     9;
   3,    43,     2387;
   7,   587,   351773,     655089857;
  12, 11703, 92197523, 2586209749712, 185543613289205809;
  ...
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Main diagonal is A376808.

Programs

  • PARI
    \\ B(m,n) is A162663(n,m).
    B(m,n)={n!*polcoef(exp(sumdiv(m,d, (exp(d*x + O(x*x^n))-1)/d)), n)}
    T(n,k)={my(v=vector(lcm(n,k))); fordiv(n,d, fordiv(k,e, v[lcm(d,e)] += eulerphi(d) * eulerphi(e) )); sumdiv(#v, g, v[g]*B(g,n*k/g))/(n*k)} \\ Andrew Howroyd, Oct 06 2024

Formula

T(n,k) = Sum_{Q=1..n*k} (1/(n*k*Q!))*(Sum_{sigma in S_Q} Sum_{d|n} Sum_{f|k} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(k/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..Q} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.
T(n,k) = (Sum_{d|n} Sum_{f|k} phi(d) * phi(f) * A162663(n*k/lcm(d,f), lcm(d,f)))/(n*k). - Andrew Howroyd, Oct 06 2024

A376747 Number of non-isomorphic colorings of a toroidal n X n grid using exactly two swappable colors.

Original entry on oeis.org

0, 4, 31, 2107, 671103, 954459519, 5744387279871, 144115188277194943, 14925010118699132241919, 6338253001141180784480847871, 10985355337065420437221545952731135, 77433143050453552574875182200691073835007, 2213872302702432822841084717014014514981767643135, 256208234097415541381052629523530965709132732687965552639
Offset: 1

Views

Author

Marko Riedel, Oct 03 2024

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Main diagonal of A294791.

Formula

a(n) = (1/(n^2*2!))*(Sum_{sigma in S_2} Sum_{d|n} Sum_{f|n} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(n/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..2} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.

A376748 Number of non-isomorphic colorings of a toroidal n X n grid using exactly three swappable colors.

Original entry on oeis.org

0, 3, 345, 447156, 5647919665, 694881637942816, 813943290958393433377, 8941884948534360647405572800, 912400181570021638669407666368774097, 858962534553352212055863239761275173880606456, 7425662396340624836407113113710889289196975262054947345, 587417576454184723055270940786413231085263155884260701824558793960
Offset: 1

Views

Author

Marko Riedel, Oct 03 2024

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Main diagonal of A294792.

Formula

a(n) = (1/(n^2*3!))*(Sum_{sigma in S_3} Sum_{d|n} Sum_{f|n} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(n/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..3} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.

A376749 Number of non-isomorphic colorings of a toroidal n X n grid using exactly four swappable colors.

Original entry on oeis.org

0, 1, 874, 10741819, 1870851589562, 5465007068038102643, 269482732023591671431784330, 221537990355601030571170905795094315, 3007205014171762201565124875608675533096268906, 669557518440386985607930852942771727146772232484581602227, 2433673642945425535196140161775877796522974318753784273286700783313050
Offset: 1

Views

Author

Marko Riedel, Oct 03 2024

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Main diagonal of A294793.

Formula

a(n) = (1/(n^2*4!))*(Sum_{sigma in S_4} Sum_{d|n} Sum_{f|n} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(n/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..4} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.
Showing 1-4 of 4 results.