cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A122081 Duplicate of A007140.

Original entry on oeis.org

1, 1, 3, 14, 115, 2086, 101791, 14835870, 6852422567, 10338780759514, 51804974736769271
Offset: 0

Views

Author

Keywords

A007139 Number of unlabeled bicolored bipartite graphs on 2n nodes having n nodes of each color with no edges between vertices of the same color and allowing the color classes to be interchanged.

Original entry on oeis.org

1, 2, 6, 26, 192, 3014, 127757, 16853750, 7343780765, 10733574184956, 52867617324773592, 882178116079222400788, 50227997322550920824045262, 9837048598740665027344331562224, 6681839615514161556535851222043192179, 15867777966020615016665849049841756464001994
Offset: 0

Views

Author

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007140.

Formula

a(n) = (A002724(n)+A122082(n))/2. - Vladeta Jovovic, Feb 27 2007

Extensions

More terms from Vladeta Jovovic, Feb 27 2007
Edited by N. J. A. Sloane, Aug 14 2007
Name clarified by Marko Riedel, Jun 15 2017
More terms from Marko Riedel, Jun 16 2017

A123547 Triangle read by rows: T(n,k) = number of unlabeled bicolored graphs with no isolated nodes having 2n nodes and k edges, with n nodes of each color. Here n >= 0, 0 <= k <= n^2.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 2, 4, 3, 2, 1, 1, 0, 0, 0, 0, 1, 2, 8, 14, 21, 20, 20, 12, 9, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1, 2, 10, 31, 76, 137, 221, 285, 321, 301, 253, 182, 122, 69, 38, 19, 10, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 11, 43, 162, 451, 1121, 2314, 4255, 6702
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

Comments

The colors may be interchanged.

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums give A007140. Cf. A007139, A106498 (gives beginning of this triangle).

A106498 Triangle read by rows: T(n,k) = number of unlabeled bicolored graphs with isolated nodes allowed having 2n nodes and k edges, with n nodes of each color. Here n >= 0, 0 <= k <= n^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 4, 5, 5, 4, 2, 1, 1, 1, 1, 2, 4, 10, 13, 23, 26, 32, 26, 23, 13, 10, 4, 2, 1, 1, 1, 1, 2, 4, 10, 20, 39, 72, 128, 198, 280, 353, 399, 399, 353, 280, 198, 128, 72, 39, 20, 10, 4, 2, 1, 1, 1, 1, 2, 4, 10, 20, 50, 99, 227, 458, 934, 1711
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

Comments

The colors may be interchanged.

Examples

			Triangles A106498 and A123547 begin:
n = 0
k = 0 : 1, 1
Total = 1, 1
n = 1
k = 0 : 1, 0
k = 1 : 1, 1
Total = 2, 1
n = 2
k = 0 : 1, 0
k = 1 : 1, 0
k = 2 : 2, 1
k = 3 : 1, 1
k = 4 : 1, 1
Totals = 6, 3
n = 3
k = 0 : 1, 0
k = 1 : 1, 0
k = 2 : 2, 0
k = 3 : 4, 1
k = 4 : 5, 2
k = 5 : 5, 4
k = 6 : 4, 3
k = 7 : 2, 2
k = 8 : 1, 1
k = 9 : 1, 1
Totals = 26, 14
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums give A007139. Cf. A007140, A123547.

A319155 Number of bicolored graphs on 2n unlabeled nodes without isolated nodes and which are invariant when the two color classes are interchanged.

Original entry on oeis.org

1, 1, 3, 11, 51, 337, 3500, 60936, 1866002, 102768062, 10296340496, 1890236147880, 639528747831552, 400813006079742544, 467517947968588109568, 1019290779610824185400096, 4170141472168738281510957264, 32130367702064742239376997422512
Offset: 0

Views

Author

Andrew Howroyd, Sep 25 2018

Keywords

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total @ Quotient[v + 1, 2];
    A122082[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    a[n_] := A122082[n] - A122082[n-1];
    a /@ Range[0, 17] (* Jean-François Alcover, Sep 05 2019, after Andrew Howroyd in A122082 *)

Formula

a(n) = A122082(n) - A122082(n-1).
Showing 1-5 of 5 results.