cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A055609 Number of 3 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 5, 17, 42, 91, 180, 328, 565, 930, 1470, 2248, 3344, 4849, 6881, 9579, 13104, 17649, 23442, 30736, 39833, 51074, 64842, 81574, 101766, 125959, 154771, 188883, 229044, 276085, 330926, 394558, 468083, 552696, 649692, 760482, 886602, 1029691, 1191539, 1374065, 1579326
Offset: 1

Views

Author

Vladeta Jovovic, Jun 03 2000

Keywords

Crossrefs

Column k=3 of A056152.

Programs

Formula

G.f.: x*(x^8-x^7-x^6-2*x^5+2*x^4+x^3-3*x^2-2*x-1)/((x^3-1)^2*(x^2-1)^2*(x-1)^3).

Extensions

Terms a(37) and beyond from Andrew Howroyd, Mar 25 2020

A055192 Number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block, up to isomorphism.

Original entry on oeis.org

1, 2, 5, 12, 35, 108, 393, 1666, 8543, 54190, 436740, 4565450, 62930604, 1156277748, 28509174012, 946786816168, 42448800498744, 2573207315483554, 211180300735118954, 23490473719472829824, 3545759835559406756008, 727077827560669587718290
Offset: 2

Views

Author

Vladeta Jovovic, Jun 18 2000

Keywords

Comments

Also the number of connected split graphs on n vertices (cf. A048194). - Falk Hüffner, Dec 01 2015
Inverse Euler transform is A007776. - Andrew Howroyd, Oct 03 2018

Crossrefs

Equals second differences of A049312.
Row sums of A056152 and also of A122083.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    A049312[d_] := Sum[A[n, d - n], {n, 0, d}];
    Differences[Table[A049312[n], {n, 0, 23}], 2] (* Jean-François Alcover, Sep 05 2019, after Alois P. Heinz in A049312 *)

A218695 Square array A(h,k) = (2^h-1)*A(h,k-1) + Sum_{i=1..h-1} binomial(h,h-i)*2^i*A(i,k-1), with A(1,k) = A(h,1) = 1; read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 25, 25, 1, 1, 79, 265, 79, 1, 1, 241, 2161, 2161, 241, 1, 1, 727, 16081, 41503, 16081, 727, 1, 1, 2185, 115465, 693601, 693601, 115465, 2185, 1, 1, 6559, 816985, 10924399, 24997921, 10924399, 816985, 6559, 1
Offset: 1

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

This symmetric table is defined in the Kreweras papers, used also in A223911. Its upper or lower triangular part equals A183109, which might provide a simpler formula.
Number of h X k binary matrices with no zero rows or columns. - Andrew Howroyd, Mar 29 2023
A(h,k) is the number of coverings of [h] by tuples (A_1,...,A_k) in P([h])^k with nonempty A_j, with P(.) denoting the power set. For the disjoint case see A019538. For tuples with "nonempty" omitted see A092477 and A329943 (amendment by Manfred Boergens, Jun 24 2024). - Manfred Boergens, May 26 2024

Examples

			Array A(h,k) begins:
=====================================================
h\k | 1   2      3        4         5           6 ...
----+------------------------------------------------
  1 | 1   1      1        1         1           1 ...
  2 | 1   7     25       79       241         727 ...
  3 | 1  25    265     2161     16081      115465 ...
  4 | 1  79   2161    41503    693601    10924399 ...
  5 | 1 241  16081   693601  24997921   831719761 ...
  6 | 1 727 115465 10924399 831719761 57366997447 ...
  ...
		

Crossrefs

Columns 1..3 are A000012, A058481, A058482.
Main diagonal is A048291.
Cf. A019538, A056152 (unlabeled case), A052332, A092477, A183109, A223911, A329943.

Programs

  • PARI
    c(h,k)={(h<2 || k<2) & return(1); sum(i=1,h-1,binomial(h,h-i)*2^i*c(i,k-1))+(2^h-1)*c(h,k-1)}
    /* For better performance when h and k are large, insert the following memoization code before "sum(...)": cM=='cM & cM=matrix(h,k); my(s=matsize(cM));
    s[1] >= h & s[2] >= k & cM[h,k] & return(cM[h,k]);
    s[1]
    				
  • PARI
    A(m, n) = sum(k=0, m, (-1)^(m-k) * binomial(m, k) * (2^k-1)^n ) \\ Andrew Howroyd, Mar 29 2023

Formula

From Andrew Howroyd, Mar 29 2023: (Start)
A(h, k) = Sum_{i=0..h} (-1)^(h-i) * binomial(h, i) * (2^i-1)^k.
A052332(n) = Sum_{i=1..n-1} binomial(n,i)*A(i, n-i) for n > 0. (End)

A055084 Number of 6 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 15, 180, 2001, 20755, 200082, 1781941, 14637962, 111011667, 779695050, 5093379110, 31092553357, 178203364143, 963217652830, 4930357535218, 23989343505296, 111335037107474, 494383391324356, 2106346854756098
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Crossrefs

Column k=6 of A056152.

Programs

A055082 Number of 4 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 8, 42, 179, 633, 2001, 5745, 15274, 38000, 89331, 199715, 427184, 878152, 1741964, 3345562, 6239390, 11327863, 20065972, 34747460, 58924066, 98002370, 160086580, 257148244, 406637336, 633669040, 973971441, 1477810227, 2215179768, 3282598034, 4811946882
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Crossrefs

Column k=4 of A056152.

Programs

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 25 2020

A055083 Number of 5 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 11, 91, 633, 3835, 20755, 102089, 461272, 1930310, 7534742, 27602968, 95428291, 312864361, 976985630, 2917175450, 8357692894, 23046527311, 61337188725, 157950527167, 394427897066, 957058104818, 2260601179661, 5206447640059, 11709619965923, 25752660738209
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Crossrefs

Column k=5 of A056152.

Programs

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 25 2020

A122083 Triangle read by rows in which row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color, with no isolated nodes; the color classes are not interchangeable.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 3, 1, 0, 0, 1, 5, 5, 1, 0, 0, 1, 8, 17, 8, 1, 0, 0, 1, 11, 42, 42, 11, 1, 0, 0, 1, 15, 91, 179, 91, 15, 1, 0, 0, 1, 19, 180, 633, 633, 180, 19, 1, 0, 0, 1, 24, 328, 2001, 3835, 2001, 328, 24, 1, 0, 0, 1, 29, 565, 5745, 20755, 20755
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2006

Keywords

Examples

			K M N Gives the number N of unlabeled bicolored graphs with no isolated nodes and having K nodes of one color and M nodes of the other color.
0 0 1
Total( 0)= 1
0 1 0
1 0 0
Total( 1)= 0
0 2 0
1 1 1
2 0 0
Total( 2)= 1
0 3 0
1 2 1
2 1 1
3 0 0
Total( 3)= 2
0 4 0
1 3 1
2 2 3
3 1 1
4 0 0
Total( 4)= 5
0 5 0
1 4 1
2 3 5
3 2 5
4 1 1
5 0 0
Total( 5)= 12
0 6 0
1 5 1
2 4 8
3 3 17
4 2 8
5 1 1
6 0 0
Total( 6)= 35
		

References

  • J. G. Lee, Almost Distributive Lattice Varieties, Algebra Universalis, 21 (1985), 280-304.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums give A055192. See A056152 for a version of this triangle with the bounding zeros in each row.
Showing 1-7 of 7 results.