cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A058481 a(n) = 3^n - 2.

Original entry on oeis.org

1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047, 177145, 531439, 1594321, 4782967, 14348905, 43046719, 129140161, 387420487, 1162261465, 3486784399, 10460353201, 31381059607, 94143178825, 282429536479, 847288609441
Offset: 1

Views

Author

Vladeta Jovovic, Nov 26 2000

Keywords

Comments

a(n) = number of 2 X n binary matrices with no zero rows or columns.
a(n)^2 + 2*a(n+1) + 1 is a square number, i.e., a(n)^2 + 2*a(n+1) + 1 = (a(n)+3)^2: for n=2, a(2)^2 + 2*a(3) + 1 = 7^2 + 2*25 + 1 = 100 = (7+3)^2; for n=3, a(3)^2 + 2*a(4) + 1 = 25^2 + 2*79 + 1 = 784 = (25+3)^2. - Bruno Berselli, Apr 23 2010
Sum of n-th row of triangle of powers of 3: 1; 3 1 3; 9 3 1 3 9; 27 9 3 1 3 9 27; ... . - Philippe Deléham, Feb 24 2014
a(n) = least k such that k*3^n + 1 is a square. Thus, the square is given by (3^n-1)^2. - Derek Orr, Mar 23 2014
Binomial transform of A058481: (1, 6, 12, 24, 48, 96, ...) and second binomial transform of (1, 5, 1, 5, 1, 5, ...). - Gary W. Adamson, Aug 24 2016
Number of ordered pairs of nonempty sets whose union is [n]. a(2) = 7: ({1,2},{1,2}), ({1,2},{1}), ({1,2},{2}), ({1},{1,2}), ({1},{2}), ({2},{1,2}), ({2},{1}). If "nonempty" is omitted we get A000244. - Manfred Boergens, Mar 29 2023

Examples

			G.f. = x + 7*x^2 + 25*x^3 + 79*x^4 + 241*x^5 + 727*x^6 + 2185*x^7 + 6559*x^8 + ...
a(1) = 1;
a(2) = 3 + 1 + 3 = 7;
a(3) = 9 + 3 + 1 + 3 + 9 = 25;
a(4) = 27 + 9 + 3 + 1 + 3 + 9 + 27 = 79; etc. - _Philippe Deléham_, Feb 24 2014
		

Crossrefs

Programs

Formula

Number of m X n binary matrices with no zero rows or columns is Sum_{j=0..m} (-1)^j*C(m, j)*(2^(m-j)-1)^n.
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-3*x)-2/(1-x)+1.
E.g.f.: e^(3*x)-2*(e^x)+1. (End)
a(n) = 3*a(n-1) + 4 (with a(1)=1). - Vincenzo Librandi, Aug 07 2010
a(n) = 4*a(n-1) - 3*a(n-2). - G. C. Greubel, Aug 25 2016

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 04 2000

A055192 Number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block, up to isomorphism.

Original entry on oeis.org

1, 2, 5, 12, 35, 108, 393, 1666, 8543, 54190, 436740, 4565450, 62930604, 1156277748, 28509174012, 946786816168, 42448800498744, 2573207315483554, 211180300735118954, 23490473719472829824, 3545759835559406756008, 727077827560669587718290
Offset: 2

Views

Author

Vladeta Jovovic, Jun 18 2000

Keywords

Comments

Also the number of connected split graphs on n vertices (cf. A048194). - Falk Hüffner, Dec 01 2015
Inverse Euler transform is A007776. - Andrew Howroyd, Oct 03 2018

Crossrefs

Equals second differences of A049312.
Row sums of A056152 and also of A122083.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    A049312[d_] := Sum[A[n, d - n], {n, 0, d}];
    Differences[Table[A049312[n], {n, 0, 23}], 2] (* Jean-François Alcover, Sep 05 2019, after Alois P. Heinz in A049312 *)

A056152 Triangular array giving number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k=1..n-1 vertices, up to isomorphism.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 17, 8, 1, 1, 11, 42, 42, 11, 1, 1, 15, 91, 179, 91, 15, 1, 1, 19, 180, 633, 633, 180, 19, 1, 1, 24, 328, 2001, 3835, 2001, 328, 24, 1, 1, 29, 565, 5745, 20755, 20755, 5745, 565, 29, 1, 1, 35, 930, 15274, 102089, 200082, 102089
Offset: 2

Views

Author

Vladeta Jovovic, Jul 29 2000

Keywords

Comments

Also table read by rows: for 0 < k < n, a(n, k) = number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k vertices, up to isomorphism.
a(n, k) is the number of isomorphism classes of finite subdirectly irreducible almost distributive lattices in which the N-quotient has k upper covers and (n - k) lower covers. - David Wasserman, Feb 11 2002
Also, row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color, with no isolated nodes; the color classes are not interchangeable.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  5,   5,   1;
  1,  8,  17,   8,  1;
  1, 11,  42,  42,  11,  1;
  1, 15,  91, 179,  91,  15,  1;
  1, 19, 180, 633, 633, 180, 19, 1;
  ...
There are 17 bipartite graphs with 6 vertices, no isolated vertices and a distinguished bipartite block with 3 vertices, or equivalently, there are 17 3 X 3 binary matrices with no zero rows or columns, up to row and column permutation:
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 0 1] [0 1 0] [0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1] [1 1 0]
[1 1 0] [1 1 1] [1 0 0] [1 0 1] [1 1 1] [1 0 1] [1 1 0] [1 1 1] [1 1 0]
and
[0 0 1] [0 0 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [1 1 1]
[1 1 0] [1 1 1] [0 1 1] [0 1 1] [1 0 1] [1 0 1] [1 1 1] [1 1 1]
[1 1 1] [1 1 1] [1 0 1] [1 1 1] [1 1 0] [1 1 1] [1 1 1] [1 1 1].
		

References

  • J. G. Lee, Almost Distributive Lattice Varieties, Algebra Universalis, 21 (1985), 280-304.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Columns k=1..6 are A000012, A024206, A055609, A055082, A055083, A055084.
Row sums give A055192.
See A122083 for another version of this triangle.

A005745 Number of n-covers of an unlabeled 3-set.

Original entry on oeis.org

1, 6, 23, 65, 156, 336, 664, 1229, 2159, 3629, 5877, 9221, 14070, 20951, 30530, 43634, 61283, 84725, 115461, 155294, 206368, 271210, 352784, 454550, 580509, 735280, 924163, 1153207, 1429292, 1760218, 2154776, 2622859, 3175555, 3825247
Offset: 1

Views

Author

Keywords

Comments

Number of n X 3 binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A055080.
First differences give A055609.

Programs

Formula

a(n) = A002727(n) - A002623(n).
G.f.: -x*(x^8-x^7-x^6-2*x^5+2*x^4+x^3-3*x^2-2*x-1)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).

Extensions

More terms from Vladeta Jovovic, May 26 2000

A055084 Number of 6 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 15, 180, 2001, 20755, 200082, 1781941, 14637962, 111011667, 779695050, 5093379110, 31092553357, 178203364143, 963217652830, 4930357535218, 23989343505296, 111335037107474, 494383391324356, 2106346854756098
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Crossrefs

Column k=6 of A056152.

Programs

A055082 Number of 4 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 8, 42, 179, 633, 2001, 5745, 15274, 38000, 89331, 199715, 427184, 878152, 1741964, 3345562, 6239390, 11327863, 20065972, 34747460, 58924066, 98002370, 160086580, 257148244, 406637336, 633669040, 973971441, 1477810227, 2215179768, 3282598034, 4811946882
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Crossrefs

Column k=4 of A056152.

Programs

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 25 2020

A055083 Number of 5 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 11, 91, 633, 3835, 20755, 102089, 461272, 1930310, 7534742, 27602968, 95428291, 312864361, 976985630, 2917175450, 8357692894, 23046527311, 61337188725, 157950527167, 394427897066, 957058104818, 2260601179661, 5206447640059, 11709619965923, 25752660738209
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Crossrefs

Column k=5 of A056152.

Programs

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 25 2020

A058482 Number of 3 X n binary matrices with no zero rows or columns.

Original entry on oeis.org

1, 25, 265, 2161, 16081, 115465, 816985, 5745121, 40294561, 282298105, 1976795305, 13839692881, 96884227441, 678208723945, 4747518463225, 33232801429441, 232630126566721, 1628412435648985, 11398891698588745, 79792255837258801, 558545832702224401
Offset: 1

Views

Author

Vladeta Jovovic, Nov 26 2000

Keywords

Crossrefs

Cf. A055602, A024206, A055609 (unlabeled case), A058481, column 3 of A183109 and A218695.

Programs

Formula

Number of m X n binary matrices with no zero rows or columns is Sum_{j=0..m}(-1)^j*C(m, j)*(2^(m-j)-1)^n.
a(n) = 7^n-3*3^n+3.
a(n) = 11*a(n-1)-31*a(n-2)+21*a(n-3). G.f.: -x*(21*x^2+14*x+1) / ((x-1)*(3*x-1)*(7*x-1)). - Colin Barker, Jul 10 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 04 2000
More terms from Colin Barker, Jul 10 2013
Showing 1-8 of 8 results.