cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055192 Number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block, up to isomorphism.

Original entry on oeis.org

1, 2, 5, 12, 35, 108, 393, 1666, 8543, 54190, 436740, 4565450, 62930604, 1156277748, 28509174012, 946786816168, 42448800498744, 2573207315483554, 211180300735118954, 23490473719472829824, 3545759835559406756008, 727077827560669587718290
Offset: 2

Views

Author

Vladeta Jovovic, Jun 18 2000

Keywords

Comments

Also the number of connected split graphs on n vertices (cf. A048194). - Falk Hüffner, Dec 01 2015
Inverse Euler transform is A007776. - Andrew Howroyd, Oct 03 2018

Crossrefs

Equals second differences of A049312.
Row sums of A056152 and also of A122083.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    A049312[d_] := Sum[A[n, d - n], {n, 0, d}];
    Differences[Table[A049312[n], {n, 0, 23}], 2] (* Jean-François Alcover, Sep 05 2019, after Alois P. Heinz in A049312 *)

A056152 Triangular array giving number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k=1..n-1 vertices, up to isomorphism.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 17, 8, 1, 1, 11, 42, 42, 11, 1, 1, 15, 91, 179, 91, 15, 1, 1, 19, 180, 633, 633, 180, 19, 1, 1, 24, 328, 2001, 3835, 2001, 328, 24, 1, 1, 29, 565, 5745, 20755, 20755, 5745, 565, 29, 1, 1, 35, 930, 15274, 102089, 200082, 102089
Offset: 2

Views

Author

Vladeta Jovovic, Jul 29 2000

Keywords

Comments

Also table read by rows: for 0 < k < n, a(n, k) = number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k vertices, up to isomorphism.
a(n, k) is the number of isomorphism classes of finite subdirectly irreducible almost distributive lattices in which the N-quotient has k upper covers and (n - k) lower covers. - David Wasserman, Feb 11 2002
Also, row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color, with no isolated nodes; the color classes are not interchangeable.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  5,   5,   1;
  1,  8,  17,   8,  1;
  1, 11,  42,  42,  11,  1;
  1, 15,  91, 179,  91,  15,  1;
  1, 19, 180, 633, 633, 180, 19, 1;
  ...
There are 17 bipartite graphs with 6 vertices, no isolated vertices and a distinguished bipartite block with 3 vertices, or equivalently, there are 17 3 X 3 binary matrices with no zero rows or columns, up to row and column permutation:
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 0 1] [0 1 0] [0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1] [1 1 0]
[1 1 0] [1 1 1] [1 0 0] [1 0 1] [1 1 1] [1 0 1] [1 1 0] [1 1 1] [1 1 0]
and
[0 0 1] [0 0 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [1 1 1]
[1 1 0] [1 1 1] [0 1 1] [0 1 1] [1 0 1] [1 0 1] [1 1 1] [1 1 1]
[1 1 1] [1 1 1] [1 0 1] [1 1 1] [1 1 0] [1 1 1] [1 1 1] [1 1 1].
		

References

  • J. G. Lee, Almost Distributive Lattice Varieties, Algebra Universalis, 21 (1985), 280-304.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Columns k=1..6 are A000012, A024206, A055609, A055082, A055083, A055084.
Row sums give A055192.
See A122083 for another version of this triangle.

A005746 Number of n-covers of an unlabeled 4-set.

Original entry on oeis.org

1, 9, 51, 230, 863, 2864, 8609, 23883, 61883, 151214, 350929, 778113, 1656265, 3398229, 6743791, 12983181, 24311044, 44377016, 79124476, 138048542, 236050912, 396137492, 653285736, 1059923072, 1693592112, 2667563553, 4145373780, 6360553548, 9643151582
Offset: 1

Views

Author

Keywords

Comments

Number of n X 4 binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A055080.
First differences give A055082.

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 3 x + 9 x^2 + 26 x^3 + 35 x^4 + 92 x^5 + 127 x^6 + 201 x^7 + 242 x^8 + 253 x^9 + 248 x^10 + 205 x^11 + 123 x^12 + 86 x^13 + 31 x^14 + 24 x^15 + 19 x^16 + 5 x^17 + 3 x^18 -
    2 x^19 - 4 x^20 + 2 x^21 - 4 x^22 + 3 x^23 - x^25 + 2 x^26 - x^27)/((1 - x)^16 (1 + x)^6 (1 + x^2)^3 (1 + x + x^2)^4), {x, 0, 29}], x] (* Michael De Vlieger, Aug 23 2016 *)
  • PARI
    Vec(x*(1 +3*x +9*x^2 +26*x^3 +35*x^4 +92*x^5 +127*x^6 +201*x^7 +242*x^8 +253*x^9 +248*x^10 +205*x^11 +123*x^12 +86*x^13 +31*x^14 +24*x^15 +19*x^16 +5*x^17 +3*x^18 -2*x^19 -4*x^20 +2*x^21 -4*x^22 +3*x^23 -x^25 +2*x^26 -x^27) / ((1 -x)^16*(1 +x)^6*(1 +x^2)^3*(1 +x +x^2)^4) + O(x^40)) \\ Colin Barker, Aug 23 2016
    
  • PARI
    Vec(G(4, x) - G(3, x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023

Formula

a(n) = A006148(n) - A002727(n).
G.f.: x*(1 +3*x +9*x^2 +26*x^3 +35*x^4 +92*x^5 +127*x^6 +201*x^7 +242*x^8 +253*x^9 +248*x^10 +205*x^11 +123*x^12 +86*x^13 +31*x^14 +24*x^15 +19*x^16 +5*x^17 +3*x^18 -2*x^19 -4*x^20 +2*x^21 -4*x^22 +3*x^23 -x^25 +2*x^26 -x^27) / ((1 -x)^16*(1 +x)^6*(1 +x^2)^3*(1 +x +x^2)^4). - Corrected by Colin Barker, Aug 23 2016

Extensions

More terms and g.f. from Vladeta Jovovic, May 26 2000
a(19) onwards corrected by Sean A. Irvine, Aug 22 2016
Showing 1-3 of 3 results.