cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Peter J. Cameron

Peter J. Cameron's wiki page.

Peter J. Cameron has authored 26 sequences. Here are the ten most recent ones:

A376766 a(n) = 1 + Sum_{k=1..n, j=1..k} binomial(n,k)*binomial(n,j)*|Stirling_1(k,j)|*j!.

Original entry on oeis.org

1, 2, 9, 67, 709, 9766, 165751, 3342081, 78023905, 2069303986, 61440372701, 2018742611535, 72713594116285, 2848845086153782, 120610707912196867, 5486918880456879061, 266925386719765703169, 13827085272988988990146, 759855686741314297312177, 44152359275709028329389627
Offset: 0

Author

Peter J. Cameron, Nov 03 2024

Keywords

Comments

If Stirling_1 in the definition is changed to Stirling_2, we get A000169.

Crossrefs

Programs

  • Maple
    A376766 := proc(n) local k,j;
    1 + sum(sum(binomial(n,k)*binomial(n,j)*abs(stirling1(k,j))*j!,j=1..k),k=1..n);
    end; # N. J. A. Sloane, Nov 03 2024
  • Mathematica
    A376766[n_] := 1 + Sum[Binomial[n, k]*Binomial[n, j]*Abs[StirlingS1[k, j]]*j!, {k, n}, {j, k}];
    Array[A376766, 25, 0] (* Paolo Xausa, Nov 04 2024 *)

Formula

a(n) ~ c * d^n * n^n / exp(n), where d = A226572 = -LambertW(-1, -exp(-2)) and c = 1.350274261169912007066341887216772613236351893372220769387... - Vaclav Kotesovec, Nov 09 2024

Extensions

Definition corrected by N. J. A. Sloane, Nov 09 2024

A359367 a(n) = number of regular polytopes of rank m-n with group S_m, up to isomorphism and duality (this is independent of m if m >= 2n+3).

Original entry on oeis.org

1, 1, 7, 9, 35, 48, 135
Offset: 1

Author

Peter J. Cameron, Dec 28 2022

Keywords

Comments

Also known as string C-groups for S_m.

Examples

			a(1)=1 since the only regular polytope of rank m-1 with group S_m is the simplex.
		

Extensions

a(7) from Peter J. Cameron, Jan 19 2023

A248905 Array read by antidiagonals: the number of automata over an n-letter alphabet whose states are determined by the last k symbols read.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 1, 30, 192, 15, 1, 1247
Offset: 1

Author

Collin Bleak and Peter J. Cameron, Mar 06 2015

Keywords

Comments

T(n,k) is the number of automata over an n-letter alphabet whose states are determined by the last k symbols read. These therefore correspond to a count of a special class of synchronized automata as in the Road Coloring Problem solved by Trahtman.
Also, T(n,k) counts equivalence relations on de Bruijn graphs compatible with edge labels.

Examples

			Below is the table T(n,k) for row n = alphabet size, and column k = synchronizing word length. Top left entry is T(1,1).
1   1     1      1      1     1   ...
2   5     30     1247   ?
5   192   ?      ?
15  98721 ?
203 ?
.
.
.
		

Crossrefs

Cf. A000110 (first column).

Formula

T(n,1) = A000110(n).

A244972 Orders of primitive groups not synchronizing a rank 3 map.

Original entry on oeis.org

3, 9, 21, 27, 45, 81, 153, 243, 441, 495, 729
Offset: 1

Author

Peter J. Cameron, Nov 12 2014

Keywords

Comments

Also, orders of graphs with clique number and chromatic number 3 which have primitive automorphism groups.

Examples

			The graphs on 3^n vertices are the Hamming graphs over 3-letter alphabet; the graphs with 21, 45 and 153 vertices are the line graphs of the 6-cage, 8-cage, and Biggs-Smith graph respectively.
		

A112578 Number of indecomposable 3-D arrays of 0's and 1's with plane sums 2.

Original entry on oeis.org

0, 8, 900, 359424, 370828800, 820150272000, 3435918974208000, 24957654229057536000, 294060698786444083200000, 5334667831784096818790400000, 42889554205720574193041408000000
Offset: 1

Author

Peter J. Cameron, Sep 14 2005

Keywords

Examples

			a(2)=8: six pairs of opposite edges and two inscribed tetrahedra.
		

References

  • P. J. Cameron and T. W. Mueller, Decomposable functors and the exponential principle, II, in preparation

Crossrefs

Cf. A010796 (2-D case), A112579, A112580.

Formula

a(1)=0, a(n) = (n!)^2*b(n)/2^n for n>1, where b(0)=1 and sum (n-1 choose k-1)*((2n-2k-1)!!)^2*b(k) = ((2n-1)!!)^2.

A112579 Number of 3-D arrays of 0's and 1's with plane sums 2.

Original entry on oeis.org

0, 8, 900, 366336, 378028800, 833156928000, 3477528928742400, 25183876050321408000, 296058177312000019660800, 5362158372805111867637760000, 143458227395428379364635443200000
Offset: 1

Author

Peter J. Cameron, Sep 14 2005

Keywords

Examples

			a(2)=8: six pairs of opposite edges and two inscribed tetrahedra.
		

References

  • P. J. Cameron and T. W. Mueller, Decomposable functors and the exponential principle, II, in preparation

Crossrefs

Cf. A001499 (2-D case), A112578, A112580.

Formula

a(n) = b(n) + Sum (k/n)*(n choose k)^3*b(k)*a(n-k), where b(n) counts indecomposable arrays (A112578).

A112580 Number of 3-D arrays of nonnegative integers with plane sums 2.

Original entry on oeis.org

1, 12, 1152, 431424, 427723200, 920031955200, 3777894212198400, 27039993414897254400, 315084437077115278540800, 5667616936309704095784960000, 150796432741520745587273564160000
Offset: 1

Author

Peter J. Cameron, Sep 14 2005

Keywords

Examples

			a(2)=12: eight 0-1 arrays and four with 2s at opposite vertices.
		

References

  • P. J. Cameron and T. W. Mueller, Decomposable functors and the exponential principle, II, in preparation

Crossrefs

Cf. A001499 (2-D case), A112578, A112579.

Formula

a(n) = b(n) + Sum (k/n)*(n choose k)^3*b(k)*a(n-k), where b(n) counts indecomposable arrays (A112578 with first term 1).

A101370 Number of zero-one matrices with n ones and no zero rows or columns.

Original entry on oeis.org

1, 4, 24, 196, 2016, 24976, 361792, 5997872, 111969552, 2324081728, 53089540992, 1323476327488, 35752797376128, 1040367629940352, 32441861122796672, 1079239231677587264, 38151510015777089280, 1428149538870997774080, 56435732691153773665280
Offset: 1

Author

Peter J. Cameron, Jan 14 2005

Keywords

Comments

a(n) = (1/(4*n!)) * Sum_{r, s>=0} (r*s)_n / 2^(r+s), where (m)_n is the falling factorial m * (m-1) * ... * (m-n+1). [Maia and Mendez]

Examples

			a(2)=4:
[1 1] [1] [1 0] [0 1]
..... [1] [0 1] [1 0]
From _Gus Wiseman_, Nov 14 2018: (Start)
The a(3) = 24 matrices:
  [111]
.
  [11][11][110][101][10][100][011][01][010][001]
  [10][01][001][010][11][011][100][11][101][110]
.
  [1][10][10][10][100][100][01][01][010][01][010][001][001]
  [1][10][01][01][010][001][10][10][100][01][001][100][010]
  [1][01][10][01][001][010][10][01][001][10][100][010][100]
(End)
		

References

  • Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, p. 435 (IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13), Springer, Berlin. [Rainer Rosenthal, Apr 10 2007]

Crossrefs

Cf. A000670 (the sequence P(n)), A049311 (row and column permutations allowed), A120733, A122725, A135589, A283877, A321446, A321587.

Programs

  • GAP
    P:=function(n) return Sum([1..n],x->Stirling2(n,x)*Factorial(x)); end;
    
  • GAP
    F:=function(n) return Sum([1..n],x->(-1)^(n-x)*Stirling1(n,x)*P(x)^2)/Factorial(n); end;
    
  • Mathematica
    m = 17; a670[n_] = Sum[ StirlingS2[n, k]*k!, {k, 0, n}]; Rest[ CoefficientList[ Series[ Sum[ a670[n]^2*(Log[1 + x]^n/n!), {n, 0, m}], {x, 0, m}], x]] (* Jean-François Alcover, Sep 02 2011, after g.f.  *)
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#]]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)
  • PARI
    {A000670(n)=sum(k=0,n,stirling(n, k,2)*k!)}
    {a(n)=polcoeff(sum(m=0,n,A000670(m)^2*log(1+x+x*O(x^n))^m/m!),n)}
    /* Paul D. Hanna, Nov 07 2009 */

Formula

a(n) = (Sum s(n, k) * P(k)^2)/n!, where P(n) is the number of labeled total preorders on {1, ..., n} (A000670), s are signed Stirling numbers of the first kind.
G.f.: Sum_{m>=0,n>=0} Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*((1+x)^j-1)^m. - Vladeta Jovovic, Mar 25 2006
Inverse binomial transform of A007322. - Vladeta Jovovic, Aug 17 2006
G.f.: Sum_{n>=0} 1/(2-(1+x)^n)/2^(n+1). - Vladeta Jovovic, Sep 23 2006
G.f.: Sum_{n>=0} A000670(n)^2*log(1+x)^n/n! where 1/(1-x) = Sum_{n>=0} A000670(n)*log(1+x)^n/n!. - Paul D. Hanna, Nov 07 2009
a(n) ~ n! / (2^(2+log(2)/2) * (log(2))^(2*(n+1))). - Vaclav Kotesovec, Dec 31 2013

A049313 Switching classes of tournaments on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 2, 6, 12, 79, 792, 19576, 886288, 75369960, 11856006240, 3467430423264, 1893448825054528, 1938818712501985736, 3737086626658278741376, 13606268915761294708760704, 93863103860384959101157737728
Offset: 1

Keywords

Examples

			a(4)=2: the "local orders" form one switching class and the class containing a 3-cycle dominating a point the other.
		

Crossrefs

Cf. A002854.

Formula

Same as for switching classes of graphs but summed only over "level" permutations (same power of 2 divides all cycle lengths)

Extensions

More terms from Vladeta Jovovic, Mar 01 2000

A049311 Number of (0,1) matrices with n ones and no zero rows or columns, up to row and column permutations.

Original entry on oeis.org

1, 3, 6, 16, 34, 90, 211, 558, 1430, 3908, 10725, 30825, 90156, 273234, 848355, 2714399, 8909057, 30042866, 103859678, 368075596, 1335537312, 4958599228, 18820993913, 72980867400, 288885080660, 1166541823566, 4802259167367, 20141650236664
Offset: 1

Keywords

Comments

Also the number of bipartite graphs with n edges, no isolated vertices and a distinguished bipartite block, up to isomorphism.
The EULERi transform (A056156) is also interesting.
a(n) is also the number of non-isomorphic set multipartitions (multisets of sets) of weight n. - Gus Wiseman, Mar 17 2017

Examples

			E.g. a(2) = 3: two ones in same row, two ones in same column, or neither.
a(3) = 6 is coefficient of x^3 in (1/36)*((1 + x)^9 + 6*(1 + x)^3*(1 + x^2)^3 + 8*(1 + x^3)^3 + 9*(1 + x)*(1 + x^2)^4 + 12*(1 + x^3)*(1 + x^6))=1 + x + 3*x^2 + 6*x^3 + 7*x^4 + 7*x^5 + 6*x^6 + 3*x^7 + x^8 + x^9.
There are a(3) = 6 binary matrices with 3 ones, with no zero rows or columns, up to row and column permutation:
  [1 0 0] [1 1 0] [1 0] [1 1] [1 1 1] [1]
  [0 1 0] [0 0 1] [1 0] [1 0] ....... [1].
  [0 0 1] ....... [0 1] ............. [1]
Non-isomorphic representatives of the a(3)=6 set multipartitions are: ((123)), ((1)(23)), ((2)(12)), ((1)(1)(1)), ((1)(2)(2)), ((1)(2)(3)). - _Gus Wiseman_, Mar 17 2017
		

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 16 2023

Formula

Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, then apply EULER transform.
a(n) is the coefficient of x^n in the cycle index Z(S_n X S_n; 1+x, 1+x^2, ...), where S_n X S_n is Cartesian product of symmetric groups S_n of degree n.

Extensions

More terms and formula from Vladeta Jovovic, Jul 29 2000
a(19)-a(28) from Max Alekseyev, Jul 22 2009
a(29)-a(102) from Aliaksandr Siarhei, Dec 13 2013
Name edited by Gus Wiseman, Dec 18 2018