Peter J. Cameron has authored 26 sequences. Here are the ten most recent ones:
A376766
a(n) = 1 + Sum_{k=1..n, j=1..k} binomial(n,k)*binomial(n,j)*|Stirling_1(k,j)|*j!.
Original entry on oeis.org
1, 2, 9, 67, 709, 9766, 165751, 3342081, 78023905, 2069303986, 61440372701, 2018742611535, 72713594116285, 2848845086153782, 120610707912196867, 5486918880456879061, 266925386719765703169, 13827085272988988990146, 759855686741314297312177, 44152359275709028329389627
Offset: 0
-
A376766 := proc(n) local k,j;
1 + sum(sum(binomial(n,k)*binomial(n,j)*abs(stirling1(k,j))*j!,j=1..k),k=1..n);
end; # N. J. A. Sloane, Nov 03 2024
-
A376766[n_] := 1 + Sum[Binomial[n, k]*Binomial[n, j]*Abs[StirlingS1[k, j]]*j!, {k, n}, {j, k}];
Array[A376766, 25, 0] (* Paolo Xausa, Nov 04 2024 *)
A359367
a(n) = number of regular polytopes of rank m-n with group S_m, up to isomorphism and duality (this is independent of m if m >= 2n+3).
Original entry on oeis.org
1, 1, 7, 9, 35, 48, 135
Offset: 1
a(1)=1 since the only regular polytope of rank m-1 with group S_m is the simplex.
A248905
Array read by antidiagonals: the number of automata over an n-letter alphabet whose states are determined by the last k symbols read.
Original entry on oeis.org
1, 1, 2, 1, 5, 5, 1, 30, 192, 15, 1, 1247
Offset: 1
Below is the table T(n,k) for row n = alphabet size, and column k = synchronizing word length. Top left entry is T(1,1).
1 1 1 1 1 1 ...
2 5 30 1247 ?
5 192 ? ?
15 98721 ?
203 ?
.
.
.
- Collin Bleak, Table of a(n,k) listed as antidiagonal ordered sequence in index m = 1..15.
- Collin Bleak, Peter J. Cameron, and Feyishayo Olukoya, Automorphisms of shift spaces and the Higman-Thomspon groups: the one-sided case, arXiv:2004.08478 [math.GR], 2020.
- Avraham N. Trahtman, The Road Coloring Problem, arXiv:0709.0099 [cs.DM], 2007.
- Avraham N. Trahtman, The Road Coloring Problem, Israel Journal of Mathematics, 172 (2009), 51-60.
A244972
Orders of primitive groups not synchronizing a rank 3 map.
Original entry on oeis.org
3, 9, 21, 27, 45, 81, 153, 243, 441, 495, 729
Offset: 1
The graphs on 3^n vertices are the Hamming graphs over 3-letter alphabet; the graphs with 21, 45 and 153 vertices are the line graphs of the 6-cage, 8-cage, and Biggs-Smith graph respectively.
A112578
Number of indecomposable 3-D arrays of 0's and 1's with plane sums 2.
Original entry on oeis.org
0, 8, 900, 359424, 370828800, 820150272000, 3435918974208000, 24957654229057536000, 294060698786444083200000, 5334667831784096818790400000, 42889554205720574193041408000000
Offset: 1
a(2)=8: six pairs of opposite edges and two inscribed tetrahedra.
- P. J. Cameron and T. W. Mueller, Decomposable functors and the exponential principle, II, in preparation
A112579
Number of 3-D arrays of 0's and 1's with plane sums 2.
Original entry on oeis.org
0, 8, 900, 366336, 378028800, 833156928000, 3477528928742400, 25183876050321408000, 296058177312000019660800, 5362158372805111867637760000, 143458227395428379364635443200000
Offset: 1
a(2)=8: six pairs of opposite edges and two inscribed tetrahedra.
- P. J. Cameron and T. W. Mueller, Decomposable functors and the exponential principle, II, in preparation
A112580
Number of 3-D arrays of nonnegative integers with plane sums 2.
Original entry on oeis.org
1, 12, 1152, 431424, 427723200, 920031955200, 3777894212198400, 27039993414897254400, 315084437077115278540800, 5667616936309704095784960000, 150796432741520745587273564160000
Offset: 1
a(2)=12: eight 0-1 arrays and four with 2s at opposite vertices.
- P. J. Cameron and T. W. Mueller, Decomposable functors and the exponential principle, II, in preparation
A101370
Number of zero-one matrices with n ones and no zero rows or columns.
Original entry on oeis.org
1, 4, 24, 196, 2016, 24976, 361792, 5997872, 111969552, 2324081728, 53089540992, 1323476327488, 35752797376128, 1040367629940352, 32441861122796672, 1079239231677587264, 38151510015777089280, 1428149538870997774080, 56435732691153773665280
Offset: 1
a(2)=4:
[1 1] [1] [1 0] [0 1]
..... [1] [0 1] [1 0]
From _Gus Wiseman_, Nov 14 2018: (Start)
The a(3) = 24 matrices:
[111]
.
[11][11][110][101][10][100][011][01][010][001]
[10][01][001][010][11][011][100][11][101][110]
.
[1][10][10][10][100][100][01][01][010][01][010][001][001]
[1][10][01][01][010][001][10][10][100][01][001][100][010]
[1][01][10][01][001][010][10][01][001][10][100][010][100]
(End)
- Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, p. 435 (IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13), Springer, Berlin. [Rainer Rosenthal, Apr 10 2007]
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- P. J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
- Giulio Cerbai and Anders Claesson, Enumerative aspects of Caylerian polynomials, arXiv:2411.08426 [math.CO], 2024. See pp. 3, 19.
- Loïc Foissy, Claudia Malvenuto, and Frédéric Patras, Matrix symmetric and quasi-symmetric functions and noncommutative representation theory, arXiv:2503.14417 [math.CO], 2025. See p. 20.
- M. Maia and M. Mendez, On the arithmetic product of combinatorial species, arXiv:math/0503436 [math.CO], 2005.
-
P:=function(n) return Sum([1..n],x->Stirling2(n,x)*Factorial(x)); end;
-
F:=function(n) return Sum([1..n],x->(-1)^(n-x)*Stirling1(n,x)*P(x)^2)/Factorial(n); end;
-
m = 17; a670[n_] = Sum[ StirlingS2[n, k]*k!, {k, 0, n}]; Rest[ CoefficientList[ Series[ Sum[ a670[n]^2*(Log[1 + x]^n/n!), {n, 0, m}], {x, 0, m}], x]] (* Jean-François Alcover, Sep 02 2011, after g.f. *)
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#]]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)
-
{A000670(n)=sum(k=0,n,stirling(n, k,2)*k!)}
{a(n)=polcoeff(sum(m=0,n,A000670(m)^2*log(1+x+x*O(x^n))^m/m!),n)}
/* Paul D. Hanna, Nov 07 2009 */
A049313
Switching classes of tournaments on n nodes.
Original entry on oeis.org
1, 1, 1, 2, 2, 6, 12, 79, 792, 19576, 886288, 75369960, 11856006240, 3467430423264, 1893448825054528, 1938818712501985736, 3737086626658278741376, 13606268915761294708760704, 93863103860384959101157737728
Offset: 1
a(4)=2: the "local orders" form one switching class and the class containing a 3-cycle dominating a point the other.
A049311
Number of (0,1) matrices with n ones and no zero rows or columns, up to row and column permutations.
Original entry on oeis.org
1, 3, 6, 16, 34, 90, 211, 558, 1430, 3908, 10725, 30825, 90156, 273234, 848355, 2714399, 8909057, 30042866, 103859678, 368075596, 1335537312, 4958599228, 18820993913, 72980867400, 288885080660, 1166541823566, 4802259167367, 20141650236664
Offset: 1
E.g. a(2) = 3: two ones in same row, two ones in same column, or neither.
a(3) = 6 is coefficient of x^3 in (1/36)*((1 + x)^9 + 6*(1 + x)^3*(1 + x^2)^3 + 8*(1 + x^3)^3 + 9*(1 + x)*(1 + x^2)^4 + 12*(1 + x^3)*(1 + x^6))=1 + x + 3*x^2 + 6*x^3 + 7*x^4 + 7*x^5 + 6*x^6 + 3*x^7 + x^8 + x^9.
There are a(3) = 6 binary matrices with 3 ones, with no zero rows or columns, up to row and column permutation:
[1 0 0] [1 1 0] [1 0] [1 1] [1 1 1] [1]
[0 1 0] [0 0 1] [1 0] [1 0] ....... [1].
[0 0 1] ....... [0 1] ............. [1]
Non-isomorphic representatives of the a(3)=6 set multipartitions are: ((123)), ((1)(23)), ((2)(12)), ((1)(1)(1)), ((1)(2)(2)), ((1)(2)(3)). - _Gus Wiseman_, Mar 17 2017
- Aliaksandr Siarhei, Table of n, a(n) for n = 1..102
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
- Peter J. Cameron, Problems on Permutation Groups, see Problem 3
- Index entries for sequences related to binary matrices.
Cf.
A049312,
A048194,
A028657,
A055192,
A055599,
A052371,
A052370,
A053304,
A053305,
A007716,
A002724.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 16 2023
Comments