cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053195 Number of level permutations of degree n.

Original entry on oeis.org

1, 1, 2, 3, 18, 45, 360, 1575, 20790, 99225, 1332450, 9823275, 181496700, 1404728325, 26221595400, 273922023375, 7196040101250, 69850115960625, 1662139682453250, 22561587455281875, 675158520854317500, 9002073394657468125, 259715927440434465000
Offset: 0

Views

Author

Vladeta Jovovic, Mar 02 2000

Keywords

Comments

A permutation is level if the powers of 2 dividing its cycle lengths are all equal.
For odd n, level permutations of degree n are just permutations that have odd order, i.e., A053195(2*n+1) = A000246(2*n+1). - Vladeta Jovovic, Sep 29 2004

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, p) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j*
           b(n-i*j, i-2*p, p), j=0..n/i)))
        end:
    a:= n-> (m-> `if`(n=0, 1, add(b(n, (h-> h-1+irem(h, 2)
        )(iquo(n, 2^j))*2^j, 2^j), j=0..m)))(ilog2(n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 11 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, p_] := b[n, i, p] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*(i-1)!^j*b[n - i*j, i-2*p, p], {j, 0, n/i}]]]; a[n_] := Function[{m}, If[n == 0, 1, Sum[ b[n, Function [{h}, h - 1 + Mod[h, 2]][Quotient[n, 2^j]]*2^j, 2^j], {j, 0, m}]]][Log[2, n] // Floor]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 07 2015, after Alois P. Heinz *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 11 2015

A053197 Number of level partitions of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 6, 5, 10, 8, 13, 12, 21, 18, 27, 27, 42, 38, 54, 54, 77, 76, 101, 104, 143, 142, 183, 192, 249, 256, 323, 340, 432, 448, 550, 585, 722, 760, 918, 982, 1190, 1260, 1502, 1610, 1917, 2048, 2408, 2590, 3053, 3264, 3800, 4097, 4765, 5120, 5910, 6378
Offset: 0

Views

Author

Vladeta Jovovic, Mar 02 2000

Keywords

Comments

A partition is level if the powers of 2 dividing its parts are all equal.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-p, p), j=0..n/i)))
        end:
    a:= n-> (m-> `if`(n=0, 1, add(b(n, (h-> h-1+irem(h, 2)
        )(iquo(n, 2^j))*2^j, 2^(1+j)), j=0..m)))(ilog2(n)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 11 2015
  • Mathematica
    a[n_] := Sum[ PartitionsQ[n/2^k], {k, 0, IntegerExponent[n, 2]}]; Table[ a[n], {n, 1, 55}] (* Jean-François Alcover, Dec 12 2011, after Vladeta Jovovic *)

Formula

a(n) = Sum_{k=0..A007814(n)} A000009(n/2^k). a(2*n+1) = A000009(2*n+1) = A078408(n). - Vladeta Jovovic, Sep 29 2004

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 11 2015

A006536 Switching classes of digraphs.

Original entry on oeis.org

2, 6, 38, 684, 50224, 13946352, 14061131152, 50947324188128, 666754350781269760, 31763991166456912086656, 5550343429517595744902558208, 3581353054755185129132443153728000
Offset: 1

Views

Author

Keywords

References

  • R. C. Read, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Vladeta Jovovic, Jul 22 2000
Showing 1-3 of 3 results.