A373692 Table of the number of ways T(m,n) to partition a 2m X 2n grid into Cartesian products of size 2 X 2, read by ascending antidiagonals.
1, 3, 3, 15, 45, 15, 105, 1575, 1575, 105, 945, 99225, 510525, 99225, 945, 10395, 9823275, 376473825, 376473825, 9823275, 10395, 135135, 1404728325, 533407191975, 4202869719825, 533407191975, 1404728325, 135135, 2027025, 273922023375, 1302400497234375, 115509334438258425, 115509334438258425, 1302400497234375, 273922023375, 2027025
Offset: 1
Examples
Table T(m,n) begins: . n 1 2 3 4 5 m \ --------------------------------------------------------------------- 1 | 1 3 15 105 945 2 | 3 45 1575 99225 9823275 3 | 15 1575 510525 376473825 533407191975 4 | 105 99225 376473825 4202869719825 5 | 945 9823275 533407191975 115509334438258425 6 | 10395 1404728325 1302400497234375 6907197292027901339625 7 | 135135 273922023375 8 | 2027025 . These are the T(1,2) = 3 possible partitions: . |A A B B| |A B A B| |A B B A| |A A B B| |A B A B| |A B B A| _________________________________ #1 #2 #3 . For T(2,2) = 45 consider these special partitions: . |A A B B| |A A B B| |A A B B| |A A B B| |A A B B| |A A C C| |C C D D| |C D C D| |D D B B| |C C D D| |C D C D| |D D C C| ___________________________________ Base1 Base2 Base3 . Any partition is equivalent to exactly one of these partitions, i.e. it differs only by the order of the rows and columns. The number of equivalent partitions is respectively 9, 18, 18. Thus we have T(2,2) = 9 + 18 + 18 = 45. See the picture and the expanded example in the link section. . Some other known terms: T(5,5) = 84250218148544569727025, T(6,4) = 6907197292027901339625, T(7,4) = 814287280679532017261528625, T(8,4) = 173936355367823940296258779550625, T(9,4) = 62626268302216078023651174787170095625, T(10,4) = 35784629301848063975515694953866493243805625.
Links
- Markus Sigg, Table of n, a(n) for n = 1..59
- Rainer Rosenthal, Colored illustration showing that T(2,2) = 45.
- Rainer Rosenthal, Expanded Example.
- Markus Sigg, C program for computing the very first terms of the sequence.
- Markus Sigg, C program for computing more terms of the sequence, namely T(ROWS/2,COLS/2) where ROWS and COLS are defined in the first program lines.
Programs
-
C
// See Markus Sigg link.
Extensions
a(24) and beyond from Markus Sigg, Jul 18 2024
Comments