A357891 a(1) = 1; a(n+1) is the smallest integer > 0 that cannot be obtained from the integers {a(1), ..., a(n)} using each number exactly once and the operators +, -, *, /.
1, 2, 4, 11, 34, 152, 1079, 6610, 93221
Offset: 1
Programs
-
Python
from fractions import Fraction def a(n, v): R = dict() # index of each reachable subset is [card(s)-1][s] for i in range(n): R[i] = dict() for i in range(n): R[0][(v[i], )] = {v[i]} #reach = set(v) for j in range(1, n): for i in range((j+1)//2): for s1 in R[i]: for s2 in R[j-1-i]: if set(s1) & set(s2) == set(): s12 = tuple(sorted(set(s1) | set(s2))) if s12 not in R[len(s12)-1]: R[len(s12)-1][s12] = set() for a in R[i][s1]: for b in R[j-1-i][s2]: allowed = [a+b, a*b, a-b, b-a] if a!=0: allowed.append(Fraction(b, a)) if b!=0: allowed.append(Fraction(a, b)) R[len(s12)-1][s12].update(allowed) k = 1 while k in R[n-1][tuple(v)]: k += 1 return k alst = [1] [alst.append(a(n, alst)) for n in range(1, 6)] print(alst) # Michael S. Branicky, Nov 01 2022
Extensions
a(9) from Michael S. Branicky, Nov 10 2022