A246106
Number A(n,k) of inequivalent n X n matrices with entries from [k], where equivalence means permutations of rows or columns; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 7, 1, 0, 1, 4, 27, 36, 1, 0, 1, 5, 76, 738, 317, 1, 0, 1, 6, 175, 8240, 90492, 5624, 1, 0, 1, 7, 351, 57675, 7880456, 64796982, 251610, 1, 0, 1, 8, 637, 289716, 270656150, 79846389608, 302752867740, 33642660, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 7, 27, 76, 175, ...
0, 1, 36, 738, 8240, 57675, ...
0, 1, 317, 90492, 7880456, 270656150, ...
0, 1, 5624, 64796982, 79846389608, 20834113243925, ...
Columns k = 0-10 give:
A000007,
A000012,
A002724,
A052269,
A052271,
A052272,
A246112,
A246113,
A246114,
A246115,
A246116.
Rows n = 0-10 give:
A000012,
A001477,
A039623,
A058001,
A058002,
A058003,
A058004,
A246108,
A246109,
A246110,
A246111.
-
b:= proc(n, i) option remember; `if`(n=0, [[]],
`if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
b(n-i*j, i-1))[], j=1..n/i)]))
end:
A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]*
igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
/mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
A246106(n,k)=A353585(k,n,n) \\ M. F. Hasler, May 01 2022
A242093
Number A(n,k) of inequivalent n X k binary matrices, where equivalence means permutations of rows or columns or the symbol set; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 3, 8, 8, 3, 1, 1, 3, 14, 18, 14, 3, 1, 1, 4, 20, 47, 47, 20, 4, 1, 1, 4, 30, 95, 173, 95, 30, 4, 1, 1, 5, 40, 200, 545, 545, 200, 40, 5, 1, 1, 5, 55, 367, 1682, 2812, 1682, 367, 55, 5, 1, 1, 6, 70, 674, 4745, 14386, 14386, 4745, 674, 70, 6, 1
Offset: 0
A(1,4) = 3: [0 0 0 0], [1 0 0 0], [1 1 0 0].
A(1,5) = 3: [0 0 0 0 0], [1 0 0 0 0], [1 1 0 0 0].
A(2,2) = 5:
[0 0] [1 0] [1 1] [1 0] [1 0]
[0 0], [0 0], [0 0], [1 0], [0 1].
A(3,2) = 8:
[0 0] [1 0] [1 1] [1 0] [1 0] [1 0] [1 0] [1 1]
[0 0], [0 0], [0 0], [1 0], [0 1], [1 0], [0 1], [1 0].
[0 0] [0 0] [0 0] [0 0] [0 0] [1 0] [1 0] [0 0]
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 3, 3, 4, 4, ...
1, 2, 5, 8, 14, 20, 30, 40, ...
1, 2, 8, 18, 47, 95, 200, 367, ...
1, 3, 14, 47, 173, 545, 1682, 4745, ...
1, 3, 20, 95, 545, 2812, 14386, 68379, ...
1, 4, 30, 200, 1682, 14386, 126446, 1072086, ...
1, 4, 40, 367, 4745, 68379, 1072086, 16821330, ...
Columns (or rows) k=0-10 give:
A000012,
A008619,
A006918(n+1),
A246148,
A246149,
A246150,
A246151,
A246152,
A246153,
A246154,
A246155.
-
with(numtheory):
b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
{seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
end:
g:= proc(n, k) option remember; add(add(add(mul(mul(add(d*
coeff(u, x, d), d=divisors(ilcm(i, j)))^(igcd(i, j)*
coeff(s, x, i)*coeff(t, x, j)), j=1..degree(t)),
i=1..degree(s))/mul(i^coeff(u, x, i)*coeff(u, x, i)!,
i=1..degree(u))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
i=1..degree(t))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
i=1..degree(s)), u=b(2$2)), t=b(n$2)), s=b(k$2))
end:
A:= (n, k)-> g(sort([n, k])[]):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten[Table[Map[ Function[p, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]]];
g[n_, k_] := g[n, k] = Sum[Sum[Sum[Product[Product[With[{gc = GCD[i, j]* Coefficient[s, x, i]*Coefficient[t, x, j]}, If[gc == 0, 1, Sum[d* Coefficient[u, x, d], {d, Divisors[LCM[i, j]]}]^gc]], {j, 1, Exponent[t, x]}],
{i, Exponent[s, x]}]/Product[i^Coefficient[u, x, i]*Coefficient[u, x, i]!,
{i, Exponent[u, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!,
{i, Exponent[t, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!,
{i, Exponent[s, x]}], {u, b[2, 2]}], {t, b[n, n]}], {s, b[k, k]}];
A[n_, k_] := g @@ Sort[{n, k}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 25 2016, adapted from Maple, updated Jan 01 2021 *)
A091057
Number of n X n matrices over symbol set {1,...,n^2} equivalent under any permutation of row, columns or the symbol set.
Original entry on oeis.org
1, 1, 9, 777, 18500104, 322286625959257, 7368376339801908226685191, 422262377369187686156418513093399998333, 105882936532098986759153041871810253870024776751177723954
Offset: 0
-
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[Function[p, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
A242095[n_, k_] := A242095[n, k] = With[{co = Coefficient, ex = Exponent}, Sum[Sum[Sum[Product[Product[With[{g = GCD[i, j]*co[s, x, i]*co[t, x, j]}, If[g == 0, 1, Sum[d*co[u, x, d], {d, Divisors[LCM[i, j]]}]^g]], {j, ex[t, x]}], {i, ex[s, x]}]/Product[i^co[u, x, i]*co[u, x, i]!, {i, ex[u, x]}]/Product[i^co[t, x, i]*co[t, x, i]!, {i, ex[t, x]}]/Product[i^co[s, x, i]*co[s, x, i]!, {i, ex[s, x]}], {u, b[k, k]}], {t, b[n, n]}], {s, b[n, n]}]];
a[n_] := A242095[n, n^2];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 6}] (* Jean-François Alcover, May 29 2023, after Alois P. Heinz in A242095 *)
A091062
Number of n X n matrices over symbol set {1,2,3,4,5} equivalent under any permutation of row, columns or the symbol set.
Original entry on oeis.org
1, 1, 9, 649, 2283123, 173636442196, 234378355489344704, 5830719097591168695360621, 2779203181367458204944451774688032, 26174539685600184383643311230836752183522328, 4992259182572292655057303928366260085844535079288641049
Offset: 0
A091059
Number of n X n matrices over symbol set {1,2} equivalent under any permutation of row, columns or the symbol set.
Original entry on oeis.org
1, 1, 5, 18, 173, 2812, 126446, 16821330, 7343033248, 10733521835504, 52867612881649880, 882178115128903807148, 50227997322259477864188380, 9837048598740464300126599181536, 6681839615514161335727724211992609234, 15867777966020615016155969700335142344866474
Offset: 0
A091058
Number of n X n matrices over symbol set {1,...,n} equivalent under any permutation of row, columns or the symbol set.
Original entry on oeis.org
1, 1, 5, 139, 332034, 173636442196, 27652322898323351716, 2006943506669869627232430791792, 95763314593596534914617136274432901605313744, 4114852471732264714685900791520508800628430894815984377778000
Offset: 0
-
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[Function[p, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
A242095[n_, k_] := A242095[n, k] = With[{co = Coefficient, ex = Exponent}, Sum[Sum[Sum[Product[Product[With[{g = GCD[i, j]*co[s, x, i]*co[t, x, j]}, If[g == 0, 1, Sum[d*co[u, x, d], {d, Divisors[LCM[i, j]]}]^g]], {j, ex[t, x]}], {i, ex[s, x]}]/Product[i^co[u, x, i]*co[u, x, i]!, {i, ex[u, x]}]/Product[i^co[t, x, i]*co[t, x, i]!, {i, ex[t, x]}]/Product[i^co[s, x, i]*co[s, x, i]!, {i, ex[s, x]}], {u, b[k, k]}], {t, b[n, n]}], {s, b[n, n]}]];
a[n_] := A242095[n, n];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, May 29 2023, after Alois P. Heinz in A242095 *)
-
Pol. = InfinitePolynomialRing(QQ)
@cached_function
def Z(n):
if n == 0: return Pol.one()
return sum(x[k]*Z(n-k) for k in (1..n))/n
@cached_function
def monprod(M):
p = Pol.one()
V = [m.variables() for m in M]
T = cartesian_product(V)
for t in T:
r = [Pol.varname_key(str(u))[1] for u in t]
j = [Pol(M[u[0]]).degree(u[1]) for u in enumerate(t)]
lcm_r = lcm(r)
p *= x[lcm_r]^(prod(r)/lcm_r*prod(j))
return p
@cached_function
def pol_isotop(n,k):
P = Z(n)
p = Pol.zero()
coeffs = P.coefficients()
mons = P.monomials()
C = cartesian_product(k*[mons])
Csorted = [tuple(sorted(u)) for u in C]
Cset = set(Csorted)
for c in Cset:
p += Csorted.count(c)*prod([coeffs[mons.index(u)] for u in c])*monprod(c)
return p
@cached_function
def rule_sub(r,m):
D = 0
for d in divisors(r):
try: D += d*m.degrees()[-d-1]
except: break
return D
def a(n,k=2):
P = Z(n)
coeffs = P.coefficients()
Q = pol_isotop(n,k)
inds = [Pol.varname_key(str(u))[1] for u in Q.variables()]
p = 0
for mon in enumerate(P.monomials()):
m = Pol(mon[1])
p += coeffs[mon[0]]*Q.subs({x[i]:rule_sub(i,m) for i in inds})
return p
# Philip Turecek, Jun 17 2023
A091061
Number of n X n matrices over symbol set {1,2,3,4} equivalent under any permutation of row, columns or the symbol set.
Original entry on oeis.org
1, 1, 9, 408, 332034, 3327329224, 382430372929443, 521184164586987473279, 8728898357751671813141271503, 1850296785573740600565249566845514268, 5085095493754879591102840109774321148107411672, 184819445887199812520846920949561110945504502827686252918
Offset: 0
A242106
Number T(n,k) of inequivalent n X n matrices using exactly k different symbols, where equivalence means permutations of rows or columns or the symbol set; triangle T(n,k), n>=0, 0<=k<=n^2, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 4, 3, 1, 0, 1, 17, 121, 269, 241, 100, 24, 3, 1, 0, 1, 172, 15239, 316622, 1951089, 4820228, 5769214, 3768929, 1451594, 347251, 53628, 5645, 451, 37, 3, 1, 0, 1, 2811, 10802952, 3316523460, 170309112972, 2577666563670, 15839885888526
Offset: 0
T(2,2) = 4:
[1 0] [1 1] [1 0] [1 0]
[0 0], [0 0], [1 0], [0 1].
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 4, 3, 1;
0, 1, 17, 121, 269, 241, 100, 24, 3, 1;
0, 1, 172, 15239, 316622, 1951089, 4820228, 5769214, 3768929, ...
0, 1, 2811, 10802952, 3316523460, 170309112972, 2577666563670, ...
0, 1, 126445, 50459558944, 382379913244053, 233995925116415261, ...
-
with(numtheory):
b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
{seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
end:
A:= proc(n, k) option remember; add(add(add(mul(mul(add(d*
coeff(u, x, d), d=divisors(ilcm(i, j)))^(igcd(i, j)*
coeff(s, x, i)*coeff(t, x, j)), j=1..degree(t)),
i=1..degree(s))/mul(i^coeff(u, x, i)*coeff(u, x, i)!,
i=1..degree(u))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
i=1..degree(t))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
i=1..degree(s)), u=b(k$2)), t=b(n$2)), s=b(n$2))
end:
T:= (n, k)-> A(n, k) -A(n, k-1):
seq(seq(T(n, k), k=0..n^2), n=0..4);
-
Unprotect[Power]; 0^0 = 1; Protect[Power]; b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Table[Map[Function[{p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}] // Flatten]]; A[n_, k_] := A[n, k] = Sum[ Sum[ Sum[ Product[ Product[ Sum[d* Coefficient[u, x, d], {d, Divisors[LCM[i, j]]}]^(GCD[i, j]*Coefficient[s, x, i] * Coefficient[t, x, j]), {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}] / Product[ i^Coefficient[u, x, i]*Coefficient[u, x, i]!, {i, 1, Exponent[u, x]}] / Product[ i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}] / Product[ i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}], {u, b[k, k]}], {t, b[n, n]}], {s, b[n, n]}]; T[n_, k_] := A[n, k] - A[n, k-1]; Table[ Table[T[n, k], {k, 0, n^2}], {n, 0, 4}] // Flatten (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
A091060
Number of n X n matrices over symbol set {1,2,3} equivalent under any permutation of row, columns or the symbol set.
Original entry on oeis.org
1, 1, 8, 139, 15412, 10805764, 50459685390, 1601741458883376, 355089431048672347272, 563306081052639719480623715, 6532991278768207315727662508956920, 564259839851988012635404101255119945332425, 368759675849515285894392091271956490586673272192738
Offset: 0
A246122
Number of inequivalent n X n matrices with entries from [6], where equivalence means permutations of rows or columns or the symbol set.
Original entry on oeis.org
1, 1, 9, 749, 7103351, 2751303005866, 27652322898323351716, 7366869213307610923597063972, 54115411507106367816317351865506779820, 11308260954207756621186791090352318206730701142842, 68907599774696257326786747006406146821562575208152728866136232
Offset: 0
Showing 1-10 of 14 results.
Comments