cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A007716 Number of polynomial symmetric functions of matrix of order n under separate row and column permutations.

Original entry on oeis.org

1, 1, 4, 10, 33, 91, 298, 910, 3017, 9945, 34207, 119369, 429250, 1574224, 5916148, 22699830, 89003059, 356058540, 1453080087, 6044132794, 25612598436, 110503627621, 485161348047, 2166488899642, 9835209912767, 45370059225318, 212582817739535, 1011306624512711
Offset: 0

Views

Author

Keywords

Comments

Also, the number of nonnegative integer n X n matrices with sum of elements equal to n, under row and column permutations (cf. A120733).
This is a two-dimensional generalization of the partition function (A000041), which equals the number of length n vectors of nonnegative integers with sum n, equivalent under permutations. - Franklin T. Adams-Watters, Sep 19 2011
Also number of non-isomorphic multiset partitions of weight n. - Gus Wiseman, Sep 19 2011

Examples

			The 10 non-isomorphic multiset partitions of weight 3 are {{1, 1, 1}}, {{1, 1, 2}}, {{1, 2, 3}}, {{1}, {1, 1}}, {{1}, {1, 2}}, {{1}, {2, 2}}, {{1}, {2, 3}}, {{1}, {1}, {1}}, {{1}, {1}, {2}}, {{1}, {2}, {3}}.
		

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    c[p_, q_, k_] := SeriesCoefficient[1/Product[(1-x^LCM[p[[i]], q[[j]]])^GCD[ p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s=0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    a[n_] := a[n] = M[n, n, n];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 18}] (* Jean-François Alcover, May 03 2019, after Andrew Howroyd *)
  • PARI
    \\ See A318795
    a(n) = M(n,n,n); \\ Andrew Howroyd, Sep 03 2018
    
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t,q[j])) + O(x*x^k), -k))}
    a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q,t,n)/t))), n)); s/n!} \\ Andrew Howroyd, Mar 29 2020

Formula

a(n) is the coefficient of x^n in the cycle index Z(S_n X S_n; x_1, x_2, ...) if we replace x_i with 1+x^i+x^(2*i)+x^(3*i)+x^(4*i)+..., where S_n X S_n is the Cartesian product of symmetric groups S_n of degree n. - Vladeta Jovovic, Mar 09 2000

Extensions

More terms from Vladeta Jovovic, Jun 28 2000
a(19)-a(25) from Max Alekseyev, Jan 22 2010
a(0)=1 prepended by Alois P. Heinz, Feb 03 2019
a(26)-a(27) from Seiichi Manyama, Nov 23 2019

A319616 Number of non-isomorphic square multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 11, 27, 80, 230, 719, 2271, 7519, 25425, 88868, 317972, 1168360, 4392724, 16903393, 66463148, 266897917, 1093550522, 4568688612, 19448642187, 84308851083, 371950915996, 1669146381915, 7615141902820, 35304535554923, 166248356878549, 794832704948402, 3856672543264073, 18984761300310500
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

A multiset partition or hypergraph is square if its length (number of blocks or edges) is equal to its number of vertices.
Also the number of square integer matrices with entries summing to n and no empty rows or columns, up to permutation of rows and columns.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1}, {2}}
3: {{1,1,1}}
   {{1}, {2,2}}
   {{2}, {1,2}}
   {{1}, {2},{3}}
4: {{1,1,1,1}}
   {{1}, {1,2,2}}
   {{1}, {2,2,2}}
   {{2}, {1,2,2}}
   {{1,1}, {2,2}}
   {{1,2}, {1,2}}
   {{1,2}, {2,2}}
   {{1}, {1}, {2,3}}
   {{1}, {2}, {3,3}}
   {{1}, {3}, {2,3}}
   {{1}, {2}, {3}, {4}}
Non-isomorphic representatives of the a(4) = 11 square matrices:
. [4]
.
. [1 0]   [1 0]   [0 1]   [2 0]   [1 1]   [1 1]
. [1 2]   [0 3]   [1 2]   [0 2]   [1 1]   [0 2]
.
. [1 0 0]   [1 0 0]   [1 0 0]
. [1 0 0]   [0 1 0]   [0 0 1]
. [0 1 1]   [0 0 2]   [0 1 1]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
		

Crossrefs

Programs

  • Mathematica
    (* See A318795 for M[m, n, k]. *)
    T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
    a[0] = 1; a[n_] := Sum[T[n, k], {k, 1, n}];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* Jean-François Alcover, Nov 24 2018, after Andrew Howroyd *)
  • PARI
    \\ See A318795 for M.
    a(n) = {if(n==0, 1, sum(i=1, n, M(i,i,n) - 2*M(i,i-1,n) + M(i-1,i-1,n)))} \\ Andrew Howroyd, Nov 15 2018
    
  • PARI
    \\ See A340652 for G.
    seq(n)={Vec(1 + sum(k=1,n,polcoef(G(k,n,n,y),k,y) - polcoef(G(k-1,n,n,y),k,y)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11)-a(20) from Andrew Howroyd, Nov 15 2018
a(21) onwards from Andrew Howroyd, Jan 15 2024

A317533 Regular triangle read rows: T(n,k) = number of non-isomorphic multiset partitions of size n and length k.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 5, 14, 9, 5, 7, 28, 33, 16, 7, 11, 69, 104, 74, 29, 11, 15, 134, 294, 263, 142, 47, 15, 22, 285, 801, 948, 599, 263, 77, 22, 30, 536, 2081, 3058, 2425, 1214, 453, 118, 30, 42, 1050, 5212, 9769, 9276, 5552, 2322, 761, 181, 42, 56, 1918, 12645, 29538, 34172, 23770, 11545, 4179, 1223, 267, 56
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Examples

			Non-isomorphic representatives of the T(3,2) = 4 multiset partitions:
  {{1},{1,1}}
  {{1},{1,2}}
  {{1},{2,2}}
  {{1},{2,3}}
Triangle begins:
    1
    2    2
    3    4    3
    5   14    9    5
    7   28   33   16    7
   11   69  104   74   29   11
   15  134  294  263  142   47   15
		

Crossrefs

Row sums are A007716. First and last columns are both A000041.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    T[n_, k_] := M[k, n, n] - M[k - 1, n, n];
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 08 2020, after Andrew Howroyd *)
  • PARI
    \\ See A318795 for definition of M.
    T(n,k)={M(k, n, n) - M(k-1, n, n)}
    for(n=1, 10, for(k=1, n, print1(T(n,k),", "));print) \\ Andrew Howroyd, Dec 28 2019
    
  • PARI
    \\ Faster version.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, n)={1/prod(j=1, #q, (1-x^lcm(t, q[j]) + O(x*x^n))^gcd(t, q[j]))}
    G(m,n)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, (K(q, t, n)-1)/t) + O(x*x^n))); s/m!}
    A(n,m=n)={my(p=sum(k=0, m, G(k,n)*y^k)*(1-y)); matrix(n, m, n, k, polcoef(polcoef(p, n, x), k, y))}
    { my(T=A(10)); for(n=1, #T, print(T[n,1..n])) } \\ Andrew Howroyd, Aug 30 2020

Extensions

Terms a(29) and beyond from Andrew Howroyd, Dec 28 2019

A053307 Number of nonnegative integer 2 X 2 matrices with sum of elements equal to n, under row and column permutations.

Original entry on oeis.org

1, 1, 4, 5, 11, 14, 24, 30, 45, 55, 76, 91, 119, 140, 176, 204, 249, 285, 340, 385, 451, 506, 584, 650, 741, 819, 924, 1015, 1135, 1240, 1376, 1496, 1649, 1785, 1956, 2109, 2299, 2470, 2680, 2870, 3101, 3311, 3564, 3795, 4071, 4324, 4624, 4900, 5225, 5525
Offset: 0

Views

Author

Vladeta Jovovic, Mar 05 2000

Keywords

Comments

An interleaved sequence of pyramidal and polygonal numbers: a(2n)= A006527(n+1), a(2n+1)=A000330(n+1) - Paul Barry, Mar 17 2003
a(n) is also the number of solutions to the equation XOR(x1, x2, ..., xn) = 0 such that each xi is a 2-bit binary number and xi >= xj for i >= j. For example, a(2) = 4 since (x1, x2) = { (00, 00), (01, 01), (10, 10), (11, 11) }. - Ramasamy Chandramouli, Jan 17 2009
These are also the "spreading numbers" alpha_4(n). See Babcock et al. for precise definition.

Crossrefs

Row 2 of A318795.
Row 4 of A202175.

Programs

  • Magma
    [(n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48: n in [0..30]]; // G. C. Greubel, May 31 2018
  • Mathematica
    Table[(n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48,{n,0,20}] (* Vaclav Kotesovec, Mar 16 2014 *)
  • PARI
    for(n=0,30, print1((n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48, ", ")) \\ G. C. Greubel, May 31 2018
    

Formula

G.f.: (x^2-x+1)/((1-x^2)^2*(1-x)^2).
a(n) = (n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48. - Vaclav Kotesovec, Mar 16 2014

A052365 Number of nonnegative integer 3 X 3 matrices with sum of elements equal to n, under row and column permutations.

Original entry on oeis.org

1, 1, 4, 10, 24, 51, 114, 219, 424, 768, 1352, 2278, 3759, 5978, 9328, 14181, 21164, 30943, 44560, 63063, 88088, 121321, 165152, 222157, 295857, 389948, 509456, 659697, 847552, 1080452, 1367814, 1719652, 2148596, 2668107, 3294676, 4046069
Offset: 0

Views

Author

Vladeta Jovovic, Mar 08 2000

Keywords

Comments

Also Molien series for group of structure S_3 X S_3 = (Z_3 X Z_3).O_2^+(3) and order 36, corresponding to complete weight enumerators of Hermitian self-dual GF(3)-linear codes over GF(9) containing the all-ones vector.

Crossrefs

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    a[n_] := M[3, 3, n];
    a /@ Range[0, 40] (* Jean-François Alcover, Sep 03 2019, after Andrew Howroyd in A318795 *)

Formula

G.f.: -(x^10+2*x^8+x^7+7*x^6-3*x^5+4*x^3+x^2-2*x+1) / ((x^4-x^3+x-1)*(x^3-1)^3*(x+1)^3*(x-1)^5).
Another form for g.f.: u1/u2, where u1 := 1 + x + 2*x^3 + 10*x^4 + 17*x^5 + 19*x^6 + 20*x^7 + 29*x^8 + 37*x^9 + 34*x^10 + 23*x^11 + 12*x^12 + 7*x^13 + 3*x^14 + x^15 u2 := (1-x^2)^4*(1-x^3)^4*(1-x^6);

A052366 Number of nonnegative integer 4 X 4 matrices with sum of elements equal to n, under row and column permutations.

Original entry on oeis.org

1, 1, 4, 10, 33, 78, 224, 549, 1403, 3292, 7677, 16934, 36581, 75732, 152949, 298784, 569636, 1056500, 1916502, 3396630, 5901524, 10051384, 16820192, 27664756, 44795247, 71442327, 112366941, 174384376, 267289440, 404838044, 606375995
Offset: 0

Views

Author

Vladeta Jovovic, Mar 08 2000

Keywords

Crossrefs

Row 4 of A318795.

Formula

G.f.: (x^34 - 4*x^33 + 6*x^32 - x^31 + 3*x^30 - 11*x^29 + 33*x^28 - 19*x^27 + 81*x^26 - 52*x^25 + 152*x^24 - 36*x^23 + 255*x^22 - 130*x^21 + 367*x^20 - 84*x^19 + 350*x^18 - 94*x^17 + 350*x^16 - 84*x^15 + 367*x^14 - 130*x^13 + 255*x^12 - 36*x^11 + 152*x^10 - 52*x^9 + 81*x^8 - 19*x^7 + 33*x^6 - 11*x^5 + 3*x^4 - x^3 + 6*x^2 - 4*x + 1)/((x^10 + x^9 - x^7 - x^6 + x^4 + x^3 - x - 1)*(x^6 - 1)^2*(x^2 + 1)^3*(x^2 - 1)^4*(x^2 + x + 1)^2*(x + 1)*(x - 1)^9).

A318805 Array read by antidiagonals: T(n,k) is the number of inequivalent symmetric nonnegative integer n X n matrices with sum of elements equal to k, under row and column permutations.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 4, 2, 1, 1, 6, 8, 4, 2, 1, 1, 8, 13, 9, 4, 2, 1, 1, 10, 22, 16, 9, 4, 2, 1, 1, 13, 33, 32, 17, 9, 4, 2, 1, 1, 15, 52, 57, 35, 17, 9, 4, 2, 1, 1, 18, 76, 105, 68, 36, 17, 9, 4, 2, 1, 1, 21, 108, 178, 139, 71, 36, 17, 9, 4, 2, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 03 2018

Keywords

Examples

			Array begins:
===============================================
n\k| 1 2 3 4  5  6  7   8   9  10   11   12
---+-------------------------------------------
1  | 1 1 1 1  1  1  1   1   1   1    1    1 ...
2  | 1 2 3 5  6  8 10  13  15  18   21   25 ...
3  | 1 2 4 8 13 22 33  52  76 108  150  209 ...
4  | 1 2 4 9 16 32 57 105 178 301  490  793 ...
5  | 1 2 4 9 17 35 68 139 264 502  924 1695 ...
6  | 1 2 4 9 17 36 71 151 303 619 1234 2473 ...
7  | 1 2 4 9 17 36 72 154 315 661 1370 2885 ...
8  | 1 2 4 9 17 36 72 155 318 673 1413 3034 ...
9  | 1 2 4 9 17 36 72 155 319 676 1425 3078 ...
...
		

Crossrefs

Cf. A318795.
Main diagonal is A316983.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, k_] := SeriesCoefficient[1/(Product[Product[(1 - x^(2*LCM[p[[i]], p[[j]] ]))^GCD[p[[i]], p[[j]]], {j, 1, i - 1}], {i, 2, Length[p]}]* Product[t = p[[i]]; (1 - x^t)^Mod[t, 2]*(1 - x^(2*t))^Quotient[t, 2], {i, 1, Length[p]}]), {x, 0, k}];
    T[, 1] = T[1, ] = 1; T[n_, k_] := (s = 0; Do[s += permcount[p]*c[p, k], {p, IntegerPartitions[n]}]; s/n!);
    Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    c(p,k)={polcoef(1/(prod(i=2, #p, prod(j=1, i-1, (1 - x^(2*lcm(p[i],p[j])) + O(x*x^k))^gcd(p[i], p[j]))) * prod(i=1, #p, my(t=p[i]); (1 - x^t + O(x*x^k))^(t%2)*(1 - x^(2*t) + O(x*x^k))^(t\2) )), k)}
    T(n,k)={if(n==0, k==0, my(s=0); forpart(p=n, s+=permcount(p)*c(p,k)); s/n!)}

Formula

T(n,k) = T(k,k) for n > k.

A343874 Array read by antidiagonals: T(n,k) is the number of n X n nonnegative integer matrices with sum of elements equal to k, up to rotational symmetry.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 3, 1, 0, 1, 5, 13, 4, 1, 0, 1, 10, 43, 36, 7, 1, 0, 1, 14, 129, 204, 85, 9, 1, 0, 1, 22, 327, 980, 735, 171, 13, 1, 0, 1, 30, 761, 3876, 5145, 2109, 313, 16, 1, 0, 1, 43, 1619, 13596, 29715, 20610, 5213, 528, 21, 1
Offset: 0

Views

Author

Andrew Howroyd, May 06 2021

Keywords

Examples

			Array begins:
=====================================================
n\k | 0  1   2    3     4      5       6        7
----+------------------------------------------------
  0 | 1  0   0    0     0      0       0        0 ...
  1 | 1  1   1    1     1      1       1        1 ...
  2 | 1  1   3    5    10     14      22       30 ...
  3 | 1  3  13   43   129    327     761     1619 ...
  4 | 1  4  36  204   980   3876   13596    42636 ...
  5 | 1  7  85  735  5145  29715  148561   657511 ...
  6 | 1  9 171 2109 20610 164502 1124382  6744582 ...
  7 | 1 13 313 5213 67769 717509 6457529 50732669 ...
  ...
		

Crossrefs

Rows n=0..4 are A000007, A000012, A008610, A054771, A054773.
Columns k=0..1 are A000012, A004652.
Cf. A054772 (binary case), A318795, A343095, A343875.

Programs

  • PARI
    U(n,s)={(s(1)^(n^2) + s(1)^(n%2)*(2*s(4)^(n^2\4) + s(2)^(n^2\2)))/4}
    T(n,k)={polcoef(U(n,i->1/(1-x^i) + O(x*x^k)), k)}

A321609 Array read by antidiagonals: T(n,k) is the number of inequivalent binary n X n matrices with k ones, under row and column permutations.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 0, 1, 3, 1, 1, 0, 0, 1, 6, 3, 1, 1, 0, 0, 0, 7, 6, 3, 1, 1, 0, 0, 0, 7, 16, 6, 3, 1, 1, 0, 0, 0, 6, 21, 16, 6, 3, 1, 1, 0, 0, 0, 3, 39, 34, 16, 6, 3, 1, 1, 0, 0, 0, 1, 44, 69, 34, 16, 6, 3, 1, 1, 0, 0, 0, 1, 55, 130, 90, 34, 16, 6, 3, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Nov 14 2018

Keywords

Examples

			Array begins:
==========================================================
n\k| 0  1  2  3  4  5  6   7   8    9   10    11    12
---+------------------------------------------------------
0  | 1  0  0  0  0  0  0   0   0    0    0     0     0 ...
1  | 1  1  0  0  0  0  0   0   0    0    0     0     0 ...
2  | 1  1  3  1  1  0  0   0   0    0    0     0     0 ...
3  | 1  1  3  6  7  7  6   3   1    1    0     0     0 ...
4  | 1  1  3  6 16 21 39  44  55   44   39    21    16 ...
5  | 1  1  3  6 16 34 69 130 234  367  527   669   755 ...
6  | 1  1  3  6 16 34 90 182 425  870 1799  3323  5973 ...
7  | 1  1  3  6 16 34 90 211 515 1229 2960  6893 15753 ...
8  | 1  1  3  6 16 34 90 211 558 1371 3601  9209 24110 ...
9  | 1  1  3  6 16 34 90 211 558 1430 3825 10278 28427 ...
...
		

Crossrefs

Rows n=6..8 are A052370, A053304, A053305.
Main diagonal is A049311.
Row sums are A002724.
Cf. A052371 (as triangle), A057150, A246106, A318795.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[Product[Product[(1 + O[x]^(k + 1) + x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}], {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)]
    Table[M[n - k, n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 10 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    c(p, q, k)={polcoef(prod(i=1, #p, prod(j=1, #q, (1 + x^lcm(p[i], q[j]) + O(x*x^k))^gcd(p[i], q[j]))), k)}
    M(m, n, k)={my(s=0); forpart(p=m, forpart(q=n, s+=permcount(p) * permcount(q) * c(p, q, k))); s/(m!*n!)}
    for(n=0, 10, for(k=0, 12, print1(M(n, n, k), ", ")); print); \\ Andrew Howroyd, Nov 14 2018

Formula

T(n,k) = T(k,k) for n > k.
T(n,k) = 0 for k > n^2.

A321615 Triangle read by rows: T(n,k) is the number of k X k integer matrices with sum of elements n, with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 6, 3, 1, 0, 1, 9, 13, 3, 1, 0, 1, 17, 38, 20, 3, 1, 0, 1, 23, 97, 82, 23, 3, 1, 0, 1, 36, 217, 311, 126, 24, 3, 1, 0, 1, 46, 453, 968, 624, 151, 24, 3, 1, 0, 1, 65, 868, 2825, 2637, 933, 162, 24, 3, 1, 0, 1, 80, 1585, 7394, 10098, 4942, 1132, 165, 24, 3, 1
Offset: 0

Views

Author

Andrew Howroyd, Nov 14 2018

Keywords

Comments

Also the number of non-isomorphic multiset partitions of weight n with k parts and k vertices, where the weight of a multiset partition is the sum of sizes of its parts. - Gus Wiseman, Nov 18 2018

Examples

			Triangle begins:
    1
    0  1
    0  1    1
    0  1    2    1
    0  1    6    3    1
    0  1    9   13    3    1
    0  1   17   38   20    3    1
    0  1   23   97   82   23    3    1
    0  1   36  217  311  126   24    3    1
    0  1   46  453  968  624  151   24    3    1
    0  1   65  868 2825 2637  933  162   24    3    1
		

Crossrefs

Programs

  • Mathematica
    (* See A318795 for M[m, n, k]. *)
    T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 24 2018, from PARI *)
  • PARI
    \\ See A318795 for M.
    T(n, k) = if(k==0, n==0, M(k, k, n) - 2*M(k, k-1, n) + M(k-1, k-1, n));
    
  • PARI
    \\ See A340652 for G.
    T(n)={[Vecrev(p) | p<-Vec(1 + sum(k=1, n, y^k*(polcoef(G(k, n, n, y), k, y) - polcoef(G(k-1, n, n, y), k, y))))]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024

Extensions

Column k=0 inserted by Andrew Howroyd, Jan 17 2024
Showing 1-10 of 14 results. Next