cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A007716 Number of polynomial symmetric functions of matrix of order n under separate row and column permutations.

Original entry on oeis.org

1, 1, 4, 10, 33, 91, 298, 910, 3017, 9945, 34207, 119369, 429250, 1574224, 5916148, 22699830, 89003059, 356058540, 1453080087, 6044132794, 25612598436, 110503627621, 485161348047, 2166488899642, 9835209912767, 45370059225318, 212582817739535, 1011306624512711
Offset: 0

Views

Author

Keywords

Comments

Also, the number of nonnegative integer n X n matrices with sum of elements equal to n, under row and column permutations (cf. A120733).
This is a two-dimensional generalization of the partition function (A000041), which equals the number of length n vectors of nonnegative integers with sum n, equivalent under permutations. - Franklin T. Adams-Watters, Sep 19 2011
Also number of non-isomorphic multiset partitions of weight n. - Gus Wiseman, Sep 19 2011

Examples

			The 10 non-isomorphic multiset partitions of weight 3 are {{1, 1, 1}}, {{1, 1, 2}}, {{1, 2, 3}}, {{1}, {1, 1}}, {{1}, {1, 2}}, {{1}, {2, 2}}, {{1}, {2, 3}}, {{1}, {1}, {1}}, {{1}, {1}, {2}}, {{1}, {2}, {3}}.
		

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    c[p_, q_, k_] := SeriesCoefficient[1/Product[(1-x^LCM[p[[i]], q[[j]]])^GCD[ p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s=0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    a[n_] := a[n] = M[n, n, n];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 18}] (* Jean-François Alcover, May 03 2019, after Andrew Howroyd *)
  • PARI
    \\ See A318795
    a(n) = M(n,n,n); \\ Andrew Howroyd, Sep 03 2018
    
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t,q[j])) + O(x*x^k), -k))}
    a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q,t,n)/t))), n)); s/n!} \\ Andrew Howroyd, Mar 29 2020

Formula

a(n) is the coefficient of x^n in the cycle index Z(S_n X S_n; x_1, x_2, ...) if we replace x_i with 1+x^i+x^(2*i)+x^(3*i)+x^(4*i)+..., where S_n X S_n is the Cartesian product of symmetric groups S_n of degree n. - Vladeta Jovovic, Mar 09 2000

Extensions

More terms from Vladeta Jovovic, Jun 28 2000
a(19)-a(25) from Max Alekseyev, Jan 22 2010
a(0)=1 prepended by Alois P. Heinz, Feb 03 2019
a(26)-a(27) from Seiichi Manyama, Nov 23 2019

A008795 Molien series for 3-dimensional representation of dihedral group D_6 of order 6.

Original entry on oeis.org

1, 0, 3, 1, 6, 3, 10, 6, 15, 10, 21, 15, 28, 21, 36, 28, 45, 36, 55, 45, 66, 55, 78, 66, 91, 78, 105, 91, 120, 105, 136, 120, 153, 136, 171, 153, 190, 171, 210, 190, 231, 210, 253, 231, 276, 253, 300, 276, 325, 300, 351, 325, 378, 351, 406, 378, 435, 406, 465, 435, 496, 465, 528, 496
Offset: 0

Views

Author

Keywords

Comments

a(n-3) is the number of ordered triples of positive integers which are the side lengths of a nondegenerate triangle of perimeter n. - Rob Pratt, Jul 12 2004
a(n) is the number of ways to distribute n identical objects into 3 distinguishable bins so that no bin contains an absolute majority of objects. - Geoffrey Critzer, Mar 17 2010
From Omar E. Pol, Feb 05 2012: (Start)
Also terms of A000217 and A000217-shifted interleaved.
Also 0 together with this sequence give the first row of the square array A194801. (End)
a(n) is the number of coins left after packing 3-curves coins patterns into fountain of coins base n. Refer to A005169: "A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row". See illustration in links. - Kival Ngaokrajang, Oct 12 2013

Crossrefs

Cf. A005044.
First differences of A053307.

Programs

  • GAP
    a := [1,0,3,1,6];; for n in [6..70] do a[n] := a[n-1] + 2*a[n-2] -2*a[n-3] -a[n-4] +a[n-5]; od; a; # Muniru A Asiru, Feb 01 2018
    
  • Magma
    [(2*n^2+6*n+7)/16+3*(2*n+3)*(-1)^n/16: n in [0..70] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    a:= n-> binomial(n/2+2-3*irem(n, 2)/2, 2):
    seq(a(n), n=0..70); # Muniru A Asiru, Feb 01 2018
  • Mathematica
    Table[If[EvenQ[n], Binomial[n/2+2, 2], Binomial[(n+1)/2, 2]], {n, 0, 70}]
    CoefficientList[Series[(1+x^3)/(1-x^2)^3, {x, 0, 70}], x] (* Robert G. Wilson v, Feb 05 2012 *)
    a[ n_]:= Binomial[ Quotient[n, 2] + 2 - Mod[n, 2], 2]; (* Michael Somos, Feb 01 2018 *)
    a[ n_]:= With[ {m = If[ n < 0, -3 - n, n]}, SeriesCoefficient[ (1 - x + x^2) / ((1 - x)^3 (1 + x)^2), {x, 0, m}]]; (* Michael Somos, Feb 01 2018 *)
    LinearRecurrence[{1,2,-2,-1,1}, {1,0,3,1,6}, 70] (* Robert G. Wilson v, Feb 01 2018 *)
  • PARI
    a(n)=(2*n^2+6*n+7)/16+3*(2*n+3)*(-1)^n/16 \\ Charles R Greathouse IV, Oct 22 2015
    
  • PARI
    {a(n) = binomial(n\2 + 2 - n%2, 2)}; /* Michael Somos, Feb 01 2018 */
    
  • Sage
    [(2*n^2 +6*n +7 +3*(2*n+3)*(-1)^n)/16 for n in (0..70)] # G. C. Greubel, Sep 11 2019

Formula

The signed version with g.f. (1-x^3)/(1-x^2)^3 is the inverse binomial transform of A084861. - Paul Barry, Jun 12 2003
a(n) = binomial(n/2+2, 2) for n even, binomial((n+1)/2, 2) for n odd. - Rob Pratt, Jul 12 2004
From Paul Barry, Jul 29 2004: (Start)
a(n-2) interleaves n(n+1)/2 and n(n-1)/2.
G.f.: (1-x+x^2)/((1+x)^2*(1-x)^3).
a(n) = (2*n^2 + 6*n + 7 + 3*(2*n+3)*(-1)^n)/16. (End)
a(n) = n*(n+1)/2, n = +- 1, +- 2... - Omar E. Pol, Feb 05 2012
From Michael Somos, Feb 01 2018: (Start)
Euler transform of length 6 sequence [0, 3, 1, 0, 0, -1].
G.f.: (1 + x^3) / (1 - x^2)^3.
a(n) = a(-3-n) for all in Z. (End)

Extensions

Definition clarified by N. J. A. Sloane, Feb 02 2018

A100157 Structured rhombic dodecahedral numbers (vertex structure 9).

Original entry on oeis.org

1, 14, 55, 140, 285, 506, 819, 1240, 1785, 2470, 3311, 4324, 5525, 6930, 8555, 10416, 12529, 14910, 17575, 20540, 23821, 27434, 31395, 35720, 40425, 45526, 51039, 56980, 63365, 70210, 77531, 85344, 93665, 102510, 111895, 121836, 132349, 143450, 155155, 167480
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Also structured triakis octahedral numbers (vertex structure 9) (Cf. A100171 = alternate vertex); and structured heptagonal anti-prism numbers (Cf. A100185 = structured anti-prisms).
If Y is a 2-subset of a 2n-set X then, for n>=2, a(n-1) is the number of 4-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
Let M(2n-1) be a (2n-1)x(2n-1) matrix whose (i,j)-entry equals i^2/(i^2+sqrt(-1)) if i=j and equals 1 otherwise. Then a(n) equals (-1)^(n+1) times the real part of prod(k^2+sqrt(-1),k=1...2n-1) times the determinant of M(2n-1). - John M. Campbell, Sep 07 2011
Principal diagonal of the convolution array A213752. - Clark Kimberling, Jun 20 2012
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Whieldon and Schuetz link). a(n)= Cat(n,4), so enumerates the number of (n+1)-gon partitions of a (4*(n-1)+2)-gon. Analogous series are A000326 (k=3) and A234043 (k=5). Also, a(n)= A006918(4n+1) = A008610(4n+1) = A053307(4n+1) with offset=0. - Tom Copeland, Oct 05 2014

Examples

			For n=4, sum( (4+i)^2, i=-3..3 ) = (4-3)^2+(4-2)^2+(4-1)^2+(4-0)^2+(4+1)^2+(4+2)^2+(4+3)^2 = 140 = a(4). - _Bruno Berselli_, Jul 24 2014
		

References

  • Jolley, Summation of Series, Dover (1961).

Crossrefs

Cf. A005915 = alternate vertex; A100145 for more on structured polyhedral numbers.

Programs

  • Magma
    [(1/6)*(16*n^3-12*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
    
  • Maple
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*4), m=1..32) ; # Zerinvary Lajos, Jan 02 2008
  • PARI
    a(n)=(16*n^3-12*n^2+2*n)/6 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = (16*n^3 - 12*n^2 + 2*n)/6.
a(n) = n*(2*n-1)*(4*n-1)/3 = A000330(2*n-1). - Reinhard Zumkeller, Jul 06 2009
Sum_{n>=1} 1/(24*a(n)) = Pi/8-log(2)/2 = 0.046125491418751... [Jolley eq. 251]
G.f.: x*(1+10*x+5*x^2)/(x-1)^4. - R. J. Mathar, Oct 03 2011
a(n) = binomial(2*n+1,3) + binomial(2*n,3). - John Molokach, Jul 10 2013
a(n) = Sum_{i=-(n-1)..(n-1)} (n+i)^2. - Bruno Berselli, Jul 24 2014
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(8*x^2 + 18*x + 3)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. (End)

A008804 Expansion of 1/((1-x)^2*(1-x^2)*(1-x^4)).

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 20, 26, 35, 44, 56, 68, 84, 100, 120, 140, 165, 190, 220, 250, 286, 322, 364, 406, 455, 504, 560, 616, 680, 744, 816, 888, 969, 1050, 1140, 1230, 1330, 1430, 1540, 1650, 1771, 1892, 2024, 2156, 2300, 2444, 2600, 2756, 2925, 3094, 3276, 3458
Offset: 0

Views

Author

Keywords

Comments

b(n)=a(n-3) is the number of asymmetric nonnegative integer 2 X 2 matrices with sum of elements equal to n, under action of dihedral group D_4(b(0)=b(1)=b(2)=0). G.f. for b(n) is x^3/((1-x)^2*(1-x^2)*(1-x^4)). - Vladeta Jovovic, May 07 2000
If the offset is changed to 5, this is the 2nd Witt transform of A004526 [Moree]. - R. J. Mathar, Nov 08 2008
a(n) is the number of partitions of 2*n into powers of 2 less than or equal to 2^3. First differs from A000123 at n=8. - Alois P. Heinz, Apr 02 2012
a(n) is the number of bracelets with 4 black beads and n+3 white beads which have no reflection symmetry. For n=1 we have for example 2 such bracelets with 4 black beads and 4 white beads: BBBWBWWW and BBWBWBWW. - Herbert Kociemba, Nov 27 2016
a(n) is the also number of aperiodic bracelets with 4 black beads and n+3 white beads which have no reflection symmetry. This is equivalent to saying that a(n) is the (n+7)th element of the DHK[4] (bracelet, identity, unlabeled, 4 parts) transform of 1, 1, 1, ... (see Bower's link about transforms). Thus, for n >= 1 , a(n) = (DHK[4] c){n+7}, where c = (1 : n >= 1). This is because every bracelet with 4 black beads and n+3 white beads which has no reflection symmetry must also be aperiodic. This statement is not true anymore if we have k black beads where k is even >= 6. - _Petros Hadjicostas, Feb 24 2019

Examples

			G.f. = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + 14*x^5 + 20*x^6 + 26*x^7 + 35*x^8 + ...
There are 10 asymmetric nonnegative integer 2 X 2 matrices with sum of elements equal to 7 under action of D_4:
[0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [0 1] [0 2] [0 2] [1 1]
[1 6] [2 5] [3 4] [2 4] [3 3] [4 2] [5 1] [3 2] [4 1] [2 3]
		

Crossrefs

Column k=3 of A181322. Column k = 4 of A180472 (but with different offset).

Programs

  • GAP
    a:=[1,2,4,6,10,14,20,26];; for n in [9..60] do a[n]:=2*a[n-1] -2*a[n-3]+2*a[n-4]-2*a[n-5]+2*a[n-7]-a[n-8]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)^2*(1-x^2)*(1-x^4)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series(1/((1-x)^2*(1-x^2)*(1-x^4)), x, n+1), x, n), n = 0..60); # G. C. Greubel, Sep 12 2019
  • Mathematica
    LinearRecurrence[{2,0,-2,2,-2,0,2,-1}, {1,2,4,6,10,14,20,26}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
    gf[x_,k_]:=x^k/2 (1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])-(1+x)/(1-x^2)^Floor[k/2+1]); CoefficientList[Series[gf[x,4]/x^7,{x,0,60}],x] (* Herbert Kociemba, Nov 27 2016 *)
    Table[(84 +12*(-1)^n +85*n +3*(-1)^n*n +24*n^2 +2*n^3 +12*Sin[n Pi/2])/96, {n,0,60}] (* Eric W. Weisstein, Oct 12 2017 *)
    CoefficientList[Series[1/((1-x)^4*(1+x)^2*(1+x^2)), {x,0,60}], x] (* Eric W. Weisstein, Oct 12 2017 *)
  • PARI
    a(n)=(84+12*(-1)^n+6*I*((-I)^n-I^n)+(85+3*(-1)^n)*n+24*n^2 +2*n^3)/96 \\ Jaume Oliver Lafont, Sep 20 2009
    
  • PARI
    {a(n) = my(s = 1); if( n<-7, n = -8 - n; s = -1); if( n<0, 0, s * polcoeff( 1 / ((1 - x)^2 * (1 - x^2) * (1 - x^4)) + x * O(x^n), n))}; /* Michael Somos, Feb 02 2011 */
    
  • Sage
    def A008804_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)^2*(1-x^2)*(1-x^4))).list()
    A008804_list(60) # G. C. Greubel, Sep 12 2019
    

Formula

For a formula for a(n) see A014557.
a(n) = (84 +85*n +24*n^2 +2*n^3 +12*A056594(n+3) +3*(-1)^n*(n+4))/96. - R. J. Mathar, Nov 08 2008
a(n) = 2*(Sum_{k=0..floor(n/2)} A002620(k+2)) - A002620(n/2+2)*(1+(-1)^n)/2. - Paul Barry, Mar 05 2009
G.f.: 1/((1-x)^4*(1+x)^2*(1+x^2)). - Jaume Oliver Lafont, Sep 20 2009
Euler transform of length 4 sequence [2, 1, 0, 1]. - Michael Somos, Feb 05 2011
a(n) = -a(-8 - n) for all n in Z. - Michael Somos, Feb 05 2011
From Herbert Kociemba, Nov 27 2016: (Start)
More generally gf(k) is the g.f. for the number of bracelets without reflection symmetry with k black beads and n-k white beads.
gf(k): x^k/2 * ( (1/k)*Sum_{n|k} phi(n)/(1 - x^n)^(k/n) - (1 + x)/(1 -x^2)^floor(k/2 + 1) ). The g.f. here is gf(4)/x^7 because of the different offset. (End)
E.g.f.: ((48 + 54*x + 15*x^2 + x^3)*cosh(x) + 6*sin(x) + (36 + 57*x + 15*x^2 + x^3)*sinh(x))/48. - Stefano Spezia, May 15 2023
a(n) = A001400(n) + A001400(n-1) + A001400(n-2). - David García Herrero, Aug 26 2024
a(n) = floor((2*n^3 + 24*n^2 + n*(85+3*(-1)^n) + 96) / 96). - Hoang Xuan Thanh, May 24 2025

A318795 Array read by antidiagonals: T(n,k) is the number of inequivalent nonnegative integer n X n matrices with sum of elements equal to k, under row and column permutations.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 4, 1, 1, 11, 10, 4, 1, 1, 14, 24, 10, 4, 1, 1, 24, 51, 33, 10, 4, 1, 1, 30, 114, 78, 33, 10, 4, 1, 1, 45, 219, 224, 91, 33, 10, 4, 1, 1, 55, 424, 549, 277, 91, 33, 10, 4, 1, 1, 76, 768, 1403, 792, 298, 91, 33, 10, 4, 1, 1, 91, 1352, 3292, 2341, 881, 298, 91, 33, 10, 4, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 03 2018

Keywords

Examples

			Array begins:
===========================================================
n\k| 1 2  3  4  5   6   7    8    9    10     11     12
---+-------------------------------------------------------
1  | 1 1  1  1  1   1   1    1    1     1      1      1 ...
2  | 1 4  5 11 14  24  30   45   55    76     91    119 ...
3  | 1 4 10 24 51 114 219  424  768  1352   2278   3759 ...
4  | 1 4 10 33 78 224 549 1403 3292  7677  16934  36581 ...
5  | 1 4 10 33 91 277 792 2341 6654 18802  51508 138147 ...
6  | 1 4 10 33 91 298 881 2825 8791 27947  87410 272991 ...
7  | 1 4 10 33 91 298 910 2974 9655 32287 108274 367489 ...
8  | 1 4 10 33 91 298 910 3017 9886 33767 116325 410298 ...
9  | 1 4 10 33 91 298 910 3017 9945 34124 118729 424498 ...
...
		

Crossrefs

Main diagonal is A007716.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s=0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    Table[M[n-k+1, n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 12 2018, after Andrew Howroyd *)
  • PARI
    \\ see also link.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={1/prod(j=1, #q, (1-y^lcm(t,q[j]) + O(y*y^k))^gcd(t, q[j]))}
    M(m, n, k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoef(polcoef(exp(sum(t=1, n, K(q, t, k)/t*x^t) + O(x*x^n)), n), k)); s/m!}
    for(n=1, 10, for(k=1, 12, print1(M(n, n, k), ", ")); print); \\ updated Andrew Howroyd, Mar 29 2020

Formula

T(n,k) = T(k,k) for n > k.

A052365 Number of nonnegative integer 3 X 3 matrices with sum of elements equal to n, under row and column permutations.

Original entry on oeis.org

1, 1, 4, 10, 24, 51, 114, 219, 424, 768, 1352, 2278, 3759, 5978, 9328, 14181, 21164, 30943, 44560, 63063, 88088, 121321, 165152, 222157, 295857, 389948, 509456, 659697, 847552, 1080452, 1367814, 1719652, 2148596, 2668107, 3294676, 4046069
Offset: 0

Views

Author

Vladeta Jovovic, Mar 08 2000

Keywords

Comments

Also Molien series for group of structure S_3 X S_3 = (Z_3 X Z_3).O_2^+(3) and order 36, corresponding to complete weight enumerators of Hermitian self-dual GF(3)-linear codes over GF(9) containing the all-ones vector.

Crossrefs

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    a[n_] := M[3, 3, n];
    a /@ Range[0, 40] (* Jean-François Alcover, Sep 03 2019, after Andrew Howroyd in A318795 *)

Formula

G.f.: -(x^10+2*x^8+x^7+7*x^6-3*x^5+4*x^3+x^2-2*x+1) / ((x^4-x^3+x-1)*(x^3-1)^3*(x+1)^3*(x-1)^5).
Another form for g.f.: u1/u2, where u1 := 1 + x + 2*x^3 + 10*x^4 + 17*x^5 + 19*x^6 + 20*x^7 + 29*x^8 + 37*x^9 + 34*x^10 + 23*x^11 + 12*x^12 + 7*x^13 + 3*x^14 + x^15 u2 := (1-x^2)^4*(1-x^3)^4*(1-x^6);

A054974 Number of nonnegative integer 2 X 2 matrices with no zero rows or columns and with sum of elements equal to n, up to row and column permutation.

Original entry on oeis.org

1, 2, 6, 9, 17, 23, 36, 46, 65, 80, 106, 127, 161, 189, 232, 268, 321, 366, 430, 485, 561, 627, 716, 794, 897, 988, 1106, 1211, 1345, 1465, 1616, 1752, 1921, 2074, 2262, 2433, 2641, 2831, 3060, 3270, 3521, 3752, 4026, 4279, 4577, 4853, 5176, 5476, 5825, 6150
Offset: 2

Views

Author

Vladeta Jovovic, May 28 2000

Keywords

Comments

From Gus Wiseman, Jan 22 2019: (Start)
Also the number of non-isomorphic multiset partitions of weight n with exactly 2 distinct vertices and exactly 2 (not necessarily distinct) edges. For example, non-isomorphic representatives of the a(2) = 1 through a(5) = 9 multiset partitions are:
{{1}{2}} {{1}{22}} {{1}{122}} {{11}{122}}
{{2}{12}} {{11}{22}} {{1}{1222}}
{{12}{12}} {{11}{222}}
{{1}{222}} {{12}{122}}
{{12}{22}} {{1}{2222}}
{{2}{122}} {{12}{222}}
{{2}{1122}}
{{2}{1222}}
{{22}{122}}
(End)

Examples

			There are 9 nonnegative integer 2 X 2 matrices with no zero rows or columns and with sum of elements equal to 5, up to row and column permutation:
[0 1] [0 1] [0 1] [0 1] [0 2] [0 2] [0 2] [0 3] [1 1]
[1 3] [2 2] [3 1] [4 0] [1 2] [2 1] [3 0] [1 1] [1 2].
		

Crossrefs

Programs

  • Maple
    gf := -x^2*(x^3-x^2-1)/((x^2-1)^2*(x-1)^2): s := series(gf, x, 101): for i from 2 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • PARI
    Vec(-x^2*(x^3-x^2-1) / ((x^2-1)^2*(x-1)^2) + O(x^60)) \\ Colin Barker, Jan 16 2017

Formula

G.f.: -x^2*(x^3-x^2-1) / ((x^2-1)^2*(x-1)^2).
From Colin Barker, Jan 16 2017: (Start)
a(n) = (6 - 6*(-1)^n + (9*(-1)^n-17)*n + 12*n^2 + 2*n^3) / 48.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>7.
(End)

Extensions

More terms from James Sellers, May 29 2000

A052366 Number of nonnegative integer 4 X 4 matrices with sum of elements equal to n, under row and column permutations.

Original entry on oeis.org

1, 1, 4, 10, 33, 78, 224, 549, 1403, 3292, 7677, 16934, 36581, 75732, 152949, 298784, 569636, 1056500, 1916502, 3396630, 5901524, 10051384, 16820192, 27664756, 44795247, 71442327, 112366941, 174384376, 267289440, 404838044, 606375995
Offset: 0

Views

Author

Vladeta Jovovic, Mar 08 2000

Keywords

Crossrefs

Row 4 of A318795.

Formula

G.f.: (x^34 - 4*x^33 + 6*x^32 - x^31 + 3*x^30 - 11*x^29 + 33*x^28 - 19*x^27 + 81*x^26 - 52*x^25 + 152*x^24 - 36*x^23 + 255*x^22 - 130*x^21 + 367*x^20 - 84*x^19 + 350*x^18 - 94*x^17 + 350*x^16 - 84*x^15 + 367*x^14 - 130*x^13 + 255*x^12 - 36*x^11 + 152*x^10 - 52*x^9 + 81*x^8 - 19*x^7 + 33*x^6 - 11*x^5 + 3*x^4 - x^3 + 6*x^2 - 4*x + 1)/((x^10 + x^9 - x^7 - x^6 + x^4 + x^3 - x - 1)*(x^6 - 1)^2*(x^2 + 1)^3*(x^2 - 1)^4*(x^2 + x + 1)^2*(x + 1)*(x - 1)^9).

A362905 Array read by antidiagonals: T(n,k) is the number of n element multisets of length k vectors over GF(2) that sum to zero.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 8, 5, 3, 1, 1, 1, 16, 15, 11, 3, 1, 1, 1, 32, 51, 50, 14, 4, 1, 1, 1, 64, 187, 276, 99, 24, 4, 1, 1, 1, 128, 715, 1768, 969, 232, 30, 5, 1, 1, 1, 256, 2795, 12496, 11781, 3504, 429, 45, 5, 1, 1, 1, 512, 11051, 93600, 162877, 73440, 10659, 835, 55, 6, 1
Offset: 0

Views

Author

Andrew Howroyd, May 27 2023

Keywords

Comments

Equivalently, T(n,k) is the number multisets with n elements drawn from {0..2^k-1} such that the bitwise-xor of all the elements gives zero.
T(n,k) is the number of equivalence classes of n X k binary matrices with an even number of 1's in each column under permutation of rows.
T(n,k) is the number of equivalence classes of n X k binary matrices under permutation of rows and complementation of columns.

Examples

			Array begins:
=========================================
n/k| 0 1  2   3     4      5        6 ...
---+-------------------------------------
0  | 1 1  1   1     1      1        1 ...
1  | 1 1  1   1     1      1        1 ...
2  | 1 2  4   8    16     32       64 ...
3  | 1 2  5  15    51    187      715 ...
4  | 1 3 11  50   276   1768    12496 ...
5  | 1 3 14  99   969  11781   162877 ...
6  | 1 4 24 232  3504  73440  1878976 ...
7  | 1 4 30 429 10659 394383 18730855 ...
  ...
		

Crossrefs

Columns k=0..4 are A000012, A004526(n+2), A053307, A362906, A363350.
Rows n=2..3 are A000079, A007581.
Main diagonal is A363351.

Programs

  • Mathematica
    A362905[n_,k_]:=(Binomial[2^k+n-1,n]+If[EvenQ[n],(2^k-1)Binomial[2^(k-1)+n/2-1,n/2],0])/2^k;Table[A362905[n-k,k],{n,0,15},{k,n,0,-1}] (* Paolo Xausa, Nov 19 2023 *)
  • PARI
    T(n,k)={(binomial(2^k+n-1, n) + if(n%2==0, (2^k-1)*binomial(2^(k-1)+n/2-1,n/2)))/2^k}

Formula

T(n,k) = binomial(2^k+n-1, n)/2^k for odd n;
T(n,k) = (binomial(2^k+n-1, n) + (2^k-1)*binomial(2^(k-1)+n/2-1, n/2))/2^k for even n.
G.f. of column k: (1/(1-x)^(2^k) + (2^k-1)/(1-x^2)^(2^(k-1)))/2^k.

A052367 Number of nonnegative integer 5 X 5 matrices with sum of elements equal to n, under row and column permutations.

Original entry on oeis.org

1, 1, 4, 10, 33, 91, 277, 792, 2341, 6654, 18802, 51508, 138147, 359457, 910756, 2240915, 5365106, 12495406, 28353714, 62725603, 135469991, 285904968, 590347527, 1193817552, 2366907846, 4605225266, 8801576140, 16538061290
Offset: 0

Views

Author

Vladeta Jovovic, Mar 08 2000

Keywords

Crossrefs

Formula

G.f.: - (x^86 - 3*x^85 + 9*x^84 + 12*x^83 + 59*x^82 + 116*x^81 + 452*x^80 + 736*x^79 + 2080*x^78 + 3344*x^77 + 7312*x^76 + 11708*x^75 + 21793*x^74 + 32869*x^73 + 55563*x^72 + 79389*x^71 + 123072*x^70 + 168321*x^69 + 243961*x^68 + 319938*x^67 + 438431*x^66 + 553731*x^65 + 724251*x^64 + 885383*x^63 + 1111989*x^62 + 1318149*x^61 + 1600579*x^60 + 1845557*x^59 +
2172889*x^58 + 2444070*x^57 + 2798839*x^56 + 3076865*x^55 + 3436180*x^54 + 3696058*x^53 + 4034590*x^52 + 4250683*x^51 + 4541020*x^50 + 4689359*x^49 + 4909073*x^48 + 4972196*x^47 + 5102026*x^46 + 5069013*x^45 + 5102464*x^44 + 4971700*x^43 + 4909948*x^42 + 4688757*x^41 + 4542211*x^40 + 4249809*x^39 + 4036170*x^38 + 3694857*x^37 + 3438025*x^36 +
3075494*x^35 + 2800760*x^34 + 2442552*x^33 + 2174743*x^32 + 1843864*x^31 + 1602482*x^30 + 1316113*x^29 + 1114023*x^28 + 883313*x^27 + 725930*x^26 + 551915*x^25 + 439662*x^24 + 318308*x^23 + 245205*x^22 + 166823*x^21 + 124009*x^20 + 78506*x^19 + 56071*x^18 + 32361*x^17 + 22208*x^16 + 11357*x^15 + 7673*x^14 + 3221*x^13 + 2294*x^12 + 684*x^11 + 594*x^10 + 59*x^9 + 133*x^8 + 21*x^7 + 18*x^6 - 2*x^4 - 3*x^3 + 9*x^2 - 5*x + 1) divided by (see next line)
((x^20 - 1)*(x^11 - x^10 + x^6 - x^5 + x - 1)*(x^7 - 2*x^6 + x^5 + x^4 - x^3 - x^2 + 2*x - 1)*(x^4 + x^3 + x^2 + x + 1)^4*(x^4 - x^3 + x^2 - x + 1)*(x^4 + x^2 + 1)*(x^2 + 1)^5*(x^2 + x + 1)^5*(x + 1)^11*(x - 1)^22).
Showing 1-10 of 14 results. Next