cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A005044 Alcuin's sequence: expansion of x^3/((1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, 24, 21, 27, 24, 30, 27, 33, 30, 37, 33, 40, 37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65, 61, 70, 65, 75, 70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of triangles with integer sides and perimeter n.
Also a(n) is the number of triangles with distinct integer sides and perimeter n+6, i.e., number of triples (a, b, c) such that 1 < a < b < c < a+b, a+b+c = n+6. - Roger Cuculière
With a different offset (i.e., without the three leading zeros, as in A266755), the number of ways in which n empty casks, n casks half-full of wine and n full casks can be distributed to 3 persons in such a way that each one gets the same number of casks and the same amount of wine [Alcuin]. E.g., for n=2 one can give 2 people one full and one empty and the 3rd gets two half-full. (Comment corrected by Franklin T. Adams-Watters, Oct 23 2006)
For m >= 2, the sequence {a(n) mod m} is periodic with period 12*m. - Martin J. Erickson (erickson(AT)truman.edu), Jun 06 2008
Number of partitions of n into parts 2, 3, and 4, with at least one part 3. - Joerg Arndt, Feb 03 2013
For several values of p and q the sequence (A005044(n+p) - A005044(n-q)) leads to known sequences, see the crossrefs. - Johannes W. Meijer, Oct 12 2013
For n>=3, number of partitions of n-3 into parts 2, 3, and 4. - David Neil McGrath, Aug 30 2014
Also, a(n) is the number of partitions mu of n of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is even (see below example). - John M. Campbell, Jan 29 2016
For n > 1, number of triangles with odd side lengths and perimeter 2*n-3. - Wesley Ivan Hurt, May 13 2019
Number of partitions of n+1 into 4 parts whose largest two parts are equal. - Wesley Ivan Hurt, Jan 06 2021
For n>=3, number of weak partitions of n-3 (that is, allowing parts of size 0) into three parts with no part exceeding (n-3)/2. Also, number of weak partitions of n-3 into three parts, all of the same parity as n-3. - Kevin Long, Feb 20 2021
Also, a(n) is the number of incongruent acute triangles formed from the vertices of a regular n-gon. - Frank M Jackson, Nov 04 2022

Examples

			There are 4 triangles of perimeter 11, with sides 1,5,5; 2,4,5; 3,3,5; 3,4,4. So a(11) = 4.
G.f. = x^3 + x^5 + x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + 4*x^11 + 3*x^12 + ...
From _John M. Campbell_, Jan 29 2016: (Start)
Letting n = 15, there are a(n)=7 partitions mu |- 15 of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is even:
(13,1,1) |- 15
(11,3,1) |- 15
(9,5,1) |- 15
(9,3,3) |- 15
(7,7,1) |- 15
(7,5,3) |- 15
(5,5,5) |- 15
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. Wiley, NY, Chap.10, Section 10.2, Problems 5 and 6, pp. 451-2.
  • D. Olivastro: Ancient Puzzles. Classic Brainteasers and Other Timeless Mathematical Games of the Last 10 Centuries. New York: Bantam Books, 1993. See p. 158.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 8, #30 (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

See A266755 for a version without the three leading zeros.
Both bisections give (essentially) A001399.
(See the comments.) Cf. A008615 (p=1, q=3, offset=0), A008624 (3, 3, 0), A008679 (3, -1, 0), A026922 (1, 5, 1), A028242 (5, 7, 0), A030451 (6, 6, 0), A051274 (3, 5, 0), A052938 (8, 4, 0), A059169 (0, 6, 1), A106466 (5, 4, 0), A130722 (2, 7, 0)
Cf. this sequence (k=3), A288165 (k=4), A288166 (k=5).
Number of k-gons that can be formed with perimeter n: this sequence (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).

Programs

  • Haskell
    a005044 = p [2,3,4] . (subtract 3) where
    p _ 0 = 1
    p [] _ = 0
    p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 28 2013
  • Maple
    A005044 := n-> floor((1/48)*(n^2+3*n+21+(-1)^(n-1)*3*n)): seq(A005044(n), n=0..73);
    A005044 := -1/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[n_] := Round[If[EvenQ[n], n^2, (n + 3)^2]/48] (* Peter Bertok, Jan 09 2002 *)
    CoefficientList[Series[x^3/((1 - x^2)*(1 - x^3)*(1 - x^4)), {x, 0, 105}], x] (* Robert G. Wilson v, Jun 02 2004 *)
    me[n_] := Module[{i, j, sum = 0}, For[i = Ceiling[(n - 3)/3], i <= Floor[(n - 3)/2], i = i + 1, For[j = Ceiling[(n - i - 3)/2], j <= i, j = j + 1, sum = sum + 1] ]; Return[sum]; ] mine = Table[me[n], {n, 1, 11}]; (* Srikanth (sriperso(AT)gmail.com), Aug 02 2008 *)
    LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1},{0,0,0,1,0,1,1,2,1},80] (* Harvey P. Dale, Sep 22 2014 *)
    Table[Length@Select[IntegerPartitions[n, {3}], Max[#]*180 < 90 n &], {n, 1, 100}] (* Frank M Jackson, Nov 04 2022 *)
  • PARI
    a(n) = round(n^2 / 12) - (n\2)^2 \ 4
    
  • PARI
    a(n) = (n^2 + 6*n * (n%2) + 24) \ 48
    
  • PARI
    a(n)=if(n%2,n+3,n)^2\/48 \\ Charles R Greathouse IV, May 02 2016
    
  • PARI
    concat(vector(3), Vec((x^3)/((1-x^2)*(1-x^3)*(1-x^4)) + O(x^70))) \\ Felix Fröhlich, Jun 07 2017
    

Formula

a(n) = a(n-6) + A059169(n) = A070093(n) + A070101(n) + A024155(n).
For odd indices we have a(2*n-3) = a(2*n). For even indices, a(2*n) = nearest integer to n^2/12 = A001399(n).
For all n, a(n) = round(n^2/12) - floor(n/4)*floor((n+2)/4) = a(-3-n) = A069905(n) - A002265(n)*A002265(n+2).
For n = 0..11 (mod 12), a(n) is respectively n^2/48, (n^2 + 6*n - 7)/48, (n^2 - 4)/48, (n^2 + 6*n + 21)/48, (n^2 - 16)/48, (n^2 + 6*n - 7)/48, (n^2 + 12)/48, (n^2 + 6*n + 5)/48, (n^2 - 16)/48, (n^2 + 6*n + 9)/48, (n^2 - 4)/48, (n^2 + 6*n + 5)/48.
Euler transform of length 4 sequence [ 0, 1, 1, 1]. - Michael Somos, Sep 04 2006
a(-3 - n) = a(n). - Michael Somos, Sep 04 2006
a(n) = sum(ceiling((n-3)/3) <= i <= floor((n-3)/2), sum(ceiling((n-i-3)/2) <= j <= i, 1 ) ) for n >= 1. - Srikanth K S, Aug 02 2008
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n >= 9. - David Neil McGrath, Aug 30 2014
a(n+3) = a(n) if n is odd; a(n+3) = a(n) + floor(n/4) + 1 if n is even. Sketch of proof: There is an obvious injective map from perimeter-n triangles to perimeter-(n+3) triangles defined by f(a,b,c) = (a+1,b+1,c+1). It is easy to show f is surjective for odd n, while for n=2k the image of f is only missing the triangles (a,k+2-a,k+1) for 1 <= a <= floor(k/2)+1. - James East, May 01 2016
a(n) = round(n^2/48) if n is even; a(n) = round((n+3)^2/48) if n is odd. - James East, May 01 2016
a(n) = (6*n^2 + 18*n - 9*(-1)^n*(2*n + 3) - 36*sin(Pi*n/2) - 36*cos(Pi*n/2) + 64*cos(2*Pi*n/3) - 1)/288. - Ilya Gutkovskiy, May 01 2016
a(n) = A325691(n-3) + A000035(n) for n>=3. The bijection between partition(n,[2,3,4]) and not-over-half partition(n,3,n/2) + partition(n,2,n/2) can be built by a Ferrers(part)[0+3,1,2] map. And the last partition(n,2,n/2) is unique [n/2,n/2] if n is even, it is given by A000035. - Yuchun Ji, Sep 24 2020
a(4n+3) = a(4n) + n+1, a(4n+4) = a(4n+1) = A000212(n+1), a(4n+5) = a(4n+2) + n+1, a(4n+6) = a(4n+3) = A007980(n). - Yuchun Ji, Oct 10 2020
a(n)-a(n-4) = A008615(n-1). - R. J. Mathar, Jun 23 2021
a(n)-a(n-2) = A008679(n-3). - R. J. Mathar, Jun 23 2021

Extensions

Additional comments from Reinhard Zumkeller, May 11 2002
Yaglom reference and mod formulas from Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 27 2000
The reference to Alcuin of York (735-804) was provided by Hermann Kremer (hermann.kremer(AT)onlinehome.de), Jun 18 2004

A230267 Coins left after packing 5 curves coins patterns into fountain of coins base n.

Original entry on oeis.org

1, 3, 2, 6, 7, 9, 12, 16, 17, 23, 26, 30, 35, 41, 44, 52, 57, 63, 70, 78, 83, 93, 100, 108, 117, 127, 134, 146, 155, 165, 176, 188, 197, 211, 222, 234, 247, 261, 272, 288, 301, 315, 330, 346, 359, 377, 392, 408, 425, 443
Offset: 1

Views

Author

Kival Ngaokrajang, Oct 15 2013

Keywords

Comments

Refer to arrangement same as A005169: "A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row". The 5 curves coins patterns consist of a part of circumference and forms continuous area. There is total 13 distinct patterns. I would like to call "5C4S" type as it cover 4 coins and symmetry. When packing 5C4S into fountain of coins base n, the total number of 5C4S is A001399, the coins left is a(n) and void is A230276. See illustration in links.

Crossrefs

Cf. A008795 (3-curves coins patterns), A074148, A229093, A229154 (4-curves coins patterns), A001399 (5-curves coins patterns), A229593 (6-curves coins patterns).

Formula

G.f.: x*(x^3 - 2*x^2 + 2*x + 1)/((1-x)*(1-x^2)*(1-x^3)) (conjectured). - Ralf Stephan, Oct 17 2013

A230276 Voids left after packing 5-curves coins patterns into fountain of coins with base n.

Original entry on oeis.org

0, 1, 1, 6, 10, 16, 24, 34, 43, 57, 70, 85, 102, 121, 139, 162, 184, 208, 234, 262, 289, 321, 352, 385, 420, 457, 493, 534, 574, 616, 660, 706, 751, 801, 850, 901, 954, 1009, 1063, 1122, 1180, 1240, 1302, 1366, 1429
Offset: 1

Views

Author

Kival Ngaokrajang, Oct 15 2013

Keywords

Comments

Refer to arrangement same as A005169: "A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row". The 5 curves coins patterns consist of a part of each coin circumference and forms a continuous area. There are total 13 distinct patterns. For selected pattern, I would like to call "5C4S" type as it cover 4 coins and symmetry. When packing 5C4S into fountain of coins base n, the total number of 5C4S is A001399, the coins left is A230267 and void left is a(n). See illustration in links.

Crossrefs

Cf. A008795 (3-curves coins patterns), A074148, A229093, A229154 (4-curves coins patterns), A001399 (5-curves coins patterns), A229593 (6-curves coins patterns).

Programs

  • Maple
    A099837 := proc(n)
        op(modp(n,3)+1,[2,-1,-1]) ;
    end proc:
    A230276 := proc(n)
        -A099837(n)/3 + (-48*n+31+18*n^2+9*(-1)^n)/24 ;
    end proc:
    seq(A230276(n),n=1..40) ; # R. J. Mathar, Feb 28 2018
  • Mathematica
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 1, 1, 6, 10, 16}, 45] (* Jean-François Alcover, May 05 2023 *)

Formula

G.f.: x^2*(x^4 + 3*x^3 + 4*x^2 + 1)/((1-x)*(1-x^2)*(1-x^3)). - Ralf Stephan, Oct 17 2013
a(n) = (9*(-1)^n+18*n^2-48*n)/24 - A099837(n)/3. - R. J. Mathar, Feb 28 2018

A227906 Coins left after packing heart patterns (fixed orientation) into n X n coins.

Original entry on oeis.org

2, 4, 4, 9, 6, 13, 8, 17, 10, 21, 12, 25, 14, 29, 16, 33, 18, 37, 20, 41, 22, 45, 24, 49, 26, 53, 28, 57, 30, 61, 32, 65, 34, 69, 36, 73, 38, 77, 40, 81, 42, 85, 44, 89, 46, 93, 48, 97, 50, 101, 52, 105, 54, 109, 56, 113, 58, 117, 60, 121
Offset: 2

Views

Author

Kival Ngaokrajang, Oct 19 2013

Keywords

Comments

On the Japanese TV show "Tsuki no Koibito", a girl told her boyfriend that she saw a heart in 4 coins. Actually there are a total of 6 distinct patterns appearing in 2 X 2 coins in which each pattern consists of a part of the perimeter of each coin and forms a continuous area.
a(n) is the number of coins left after packing fixed orientation heart patterns (type 4c2s1: 4-curve cover 2 coins and symmetry) into n X n coins. The total number of hearts is A093005 and the number of voids left is A093353. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves), A074148, A229093, A229154 (4-curves), A001399, A230267, A230276 (5-curves), A229593, A228949, A229598 (6-curves).

Programs

  • Mathematica
    With[{nn=60},Join[{2,4},Riffle[Range[4,nn,2],Range[9,2nn+1,4]]]] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    Vec(-x^2*(x^5-x^3-4*x-2)/((x-1)^2*(x+1)^2) + O(x^100)) \\ Colin Barker, Oct 30 2013

Formula

From Colin Barker, Oct 30 2013: (Start)
a(n) = (-1 + (-1)^n - (-3 + (-1)^n)*n)/2 for n>3.
a(n) = n for n>3 and even.
a(n) = 2*n-1 for n > 3 and odd.
a(n) = 2*a(n-2) - a(n-4) for n>7.
G.f.: -x^2*(x^5-x^3-4*x-2) / ((x-1)^2*(x+1)^2).(End)

A230370 Voids left after packing 3 curves coins patterns (3c3s type) into fountain of coins base n.

Original entry on oeis.org

0, 0, 3, 6, 13, 19, 39, 54, 66, 85, 100, 123, 141, 168, 189, 220, 244, 279, 306, 345, 375, 418, 451, 498, 534, 585, 624, 679, 721, 780, 825, 888, 936, 1003, 1054, 1125, 1179, 1254, 1311, 1390, 1450, 1533, 1596, 1683
Offset: 1

Views

Author

Kival Ngaokrajang, Oct 17 2013

Keywords

Comments

Refer to arrangement same as A005169: "A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row". The 3 curves coins patterns consist of a part of each coin circumference and forms a continuous area. There are total 4 distinct patterns. For selected pattern, I would like to call "3c3s" type as it cover 3 coins and symmetry. When packing 3c3s into fountain of coins base n, the total number of 3c3s is A008805, the coins left is A008795 and voids left is a(n). See illustration in links.

Crossrefs

A001399, A230267, A230276 (5-curves coins patterns); A074148, A229093, A220154 (4-curves coins patterns); A008795 (3-curves coins patterns).

Formula

G.f.: x^3*(11*x^8 - 5*x^7 - 21*x^6 + 6*x^5 + 9*x^4 + x^2 + 3*x + 3)/((1-x)*(1-x^2)^2) (conjectured). Ralf Stephan, Oct 19 2013

A230548 Twin hearts patterns packing into n X n coins.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 12, 15, 16, 24, 25, 28, 35, 40, 41, 54, 55, 60, 70, 77, 78, 96, 97, 104, 117, 126, 127, 150, 151, 160, 176, 187, 188, 216, 217, 228, 247, 260, 261, 294, 295, 308, 330, 345, 346, 384, 385, 400, 425, 442
Offset: 2

Views

Author

Kival Ngaokrajang, Oct 23 2013

Keywords

Comments

Twin hearts (6c4a type) is one of total 17 distinct patterns appearing in 3X2 coins where each pattern consists of 6 perimeter parts from each coin and forms a continuous area.
a(n) is the number of total twin hearts patterns (6c4a type: 6-curves cover 4 coins) packing into n X n coins with rotation not allowed. The total coins left after packing twin hearts patterns into n X n coins is A230549 and voids left is A230550. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620 (6-curves).

Formula

G.f.: x^2 * (x^10 + x^8 + 2*x^5 + 3*x^4 + 2*x^3 + 2*x^2 + x)/((1+x^3) * (1-x^3)^2 * (1-x^2)) (conjectured). - Ralf Stephan, Oct 30 2013

A230549 Coins left after packing twin hearts patterns into n X n coins.

Original entry on oeis.org

4, 5, 8, 13, 12, 21, 32, 33, 40, 57, 48, 69, 84, 85, 96, 125, 108, 141, 160, 161, 176, 217, 192, 237, 260, 261, 280, 333, 300, 357, 384, 385, 408, 473, 432, 501, 532, 533, 560, 637, 588, 669, 704, 705, 736, 825, 768, 861
Offset: 2

Views

Author

Kival Ngaokrajang, Oct 23 2013

Keywords

Comments

Twin hearts (6c4a type) is one of total 17 distinct patterns appearing in 3X2 coins where each pattern consists of 6 perimeter parts from each coin and forms a continuous area.
a(n) is total coins left after packing twin hearts patterns (6c4a type: 6-curves cover 4 coins) into n X n coins with rotation not allowed. The total twin hearts patterns is A230548 and voids left is A230550. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620 (6-curves).

Formula

a(n) = n^2 - 4*A230548(n).
G.f.: x^2 * (-3*x^10 - 4*x^8 + 3*x^7 + 8*x^6 + 4*x^5 - x^4 + 4*x^3 + 4*x^2 + 5*x + 4)/(1+x^3)*(1-x^3)^2*(1-x^2). (conjectured). - Ralf Stephan, Oct 30 2013

A230550 Voids left after packing twin hearts patterns into n X n coins.

Original entry on oeis.org

1, 2, 5, 10, 13, 22, 33, 40, 51, 68, 73, 94, 113, 126, 145, 174, 181, 214, 241, 260, 287, 328, 337, 382, 417, 442, 477, 530, 541, 598, 641, 672, 715, 780, 793, 862, 913, 950, 1001, 1078, 1093, 1174, 1233, 1276, 1335, 1424
Offset: 2

Views

Author

Kival Ngaokrajang, Oct 23 2013

Keywords

Comments

Twin hearts (6c4a type) is one of total 17 distinct patterns appearing in 3X2 coins where each pattern consists of 6 perimeter parts from each coin and forms a continuous area.
a(n) is the number of total voids left after packing twin hearts patterns (6c4a type: 6-curves cover 4 coins) into n X n coins with rotation not allowed. The total twin hearts patterns packing into n X n coins is A230548 and coins left is A230549. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620 (6-curves).

Formula

a(n) = (n-1)^2 - 2*A230548(n).
G.f.: x^2 * (-2*x^10 + x^9 + 2*x^8 + 8*x^7 + 11*x^6 + 8*x^5 + 6*x^4 + 7*x^3 + 4*x^2 + 2*x + 1)/((1+x^3)*(1-x^3)^2*(1-x^2)) (conjectured). - Ralf Stephan, Oct 30 2013

A303301 Square array T(n,k) read by antidiagonals upwards in which row n is obtained by taking the general formula for generalized n-gonal numbers: m*((n - 2)*m - n + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and n >= 5. Here n >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, -3, 0, 1, -2, 0, 0, 1, -1, 1, -8, 0, 1, 0, 2, -5, -3, 0, 1, 1, 3, -2, 0, -15, 0, 1, 2, 4, 1, 3, -9, -8, 0, 1, 3, 5, 4, 6, -3, -2, -24, 0, 1, 4, 6, 7, 9, 3, 4, -14, -15, 0, 1, 5, 7, 10, 12, 9, 10, -4, -5, -35, 0, 1, 6, 8, 13, 15, 15, 16, 6, 5, -20, -24, 0, 1, 7, 9, 16, 18, 21, 22, 16, 15, -5, -9, -48
Offset: 0

Views

Author

Omar E. Pol, Jun 08 2018

Keywords

Comments

Note that the formula mentioned in the definition gives several kinds of numbers, for example:
Row 0 and row 1 give A317300 and A317301 respectively.
Row 2 gives A001057 (canonical enumeration of integers).
Row 3 gives 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Row 4 gives A008794 (squares repeated) except the initial zero.
Finally, for n >= 5 row n gives the generalized k-gonal numbers (see Crossrefs section).

Examples

			Array begins:
------------------------------------------------------------------
n\m  Seq. No.    0   1  -1   2  -2   3   -3    4   -4    5   -5
------------------------------------------------------------------
0    A317300:    0,  1, -3,  0, -8, -3, -15,  -8, -24, -15, -35...
1    A317301:    0,  1, -2,  1, -5,  0,  -9,  -2, -14,  -5, -20...
2    A001057:    0,  1, -1,  2, -2,  3,  -3,   4,  -4,   5,  -5...
3   (A008795):   0,  1,  0,  3,  1,  6,   3,  10,   6,  15,  10...
4   (A008794):   0,  1,  1,  4,  4,  9,   9,  16,  16,  25,  25...
5    A001318:    0,  1,  2,  5,  7, 12,  15,  22,  26,  35,  40...
6    A000217:    0,  1,  3,  6, 10, 15,  21,  28,  36,  45,  55...
7    A085787:    0,  1,  4,  7, 13, 18,  27,  34,  46,  55,  70...
8    A001082:    0,  1,  5,  8, 16, 21,  33,  40,  56,  65,  85...
9    A118277:    0,  1,  6,  9, 19, 24,  39,  46,  66,  75, 100...
10   A074377:    0,  1,  7, 10, 22, 27,  45,  52,  76,  85, 115...
11   A195160:    0,  1,  8, 11, 25, 30,  51,  58,  86,  95, 130...
12   A195162:    0,  1,  9, 12, 28, 33,  57,  64,  96, 105, 145...
13   A195313:    0,  1, 10, 13, 31, 36,  63,  70, 106, 115, 160...
14   A195818:    0,  1, 11, 14, 34, 39,  69,  76, 116, 125, 175...
15   A277082:    0,  1, 12, 15, 37, 42,  75,  82, 126, 135, 190...
...
		

Crossrefs

Columns 0..2 are A000004, A000012, A023445.
Column 3 gives A001477 which coincides with the row numbers.
Main diagonal gives A292551.
Row 0-2 gives A317300, A317301, A001057.
Row 3 gives 0 together with A008795.
Row 4 gives A008794.
For n >= 5, rows n gives the generalized n-gonal numbers: A001318 (n=5), A000217 (n=6), A085787 (n=7), A001082 (n=8), A118277 (n=9), A074377 (n=10), A195160 (n=11), A195162 (n=12), A195313 (n=13), A195818 (n=14), A277082 (n=15), A274978 (n=16), A303305 (n=17), A274979 (n=18), A303813 (n=19), A218864 (n=20), A303298 (n=21), A303299 (n=22), A303303 (n=23), A303814 (n=24), A303304 (n=25), A316724 (n=26), A316725 (n=27), A303812 (n=28), A303815 (n=29), A316729 (n=30).
Cf. A317302 (a similar table but with polygonal numbers).

Programs

  • Mathematica
    t[n_, r_] := PolygonalNumber[n, If[OddQ@ r, Floor[(r + 1)/2], -r/2]]; Table[ t[n - r, r], {n, 0, 11}, {r, 0, n}] // Flatten (* also *)
    (* to view the square array *)  Table[ t[n, r], {n, 0, 15}, {r, 0, 10}] // TableForm (* Robert G. Wilson v, Aug 08 2018 *)

Formula

T(n,k) = A194801(n-3,k) if n >= 3.

A194801 Square array read by antidiagonals: T(n,k) = k*((n+1)*k-n+1)/2, k = 0, +- 1, +- 2,..., n >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 3, 0, 1, 2, 4, 1, 0, 1, 3, 5, 4, 6, 0, 1, 4, 6, 7, 9, 3, 0, 1, 5, 7, 10, 12, 9, 10, 0, 1, 6, 8, 13, 15, 15, 16, 6, 0, 1, 7, 9, 16, 18, 21, 22, 16, 15, 0, 1, 8, 10, 19, 21, 27, 28, 26, 25, 10, 0, 1, 9, 11, 22, 24, 33, 34, 36, 35
Offset: 0

Views

Author

Omar E. Pol, Feb 05 2012

Keywords

Comments

Note that a single formula gives several types of numbers. Row 0 lists 0 together the Molien series for 3-dimensional group [2,k]+ = 22k. Row 1 lists, except first zero, the squares repeated. If n >= 2, row n lists the generalized (n+3)-gonal numbers, for example: row 2 lists the generalized pentagonal numbers A001318. See some other examples in the cross-references section.

Examples

			Array begins:
(A008795): 0, 1,  0,  3,  1,  6,  3, 10,   6,  15,  10...
(A008794): 0, 1,  1,  4,  4,  9,  9, 16,  16,  25,  25...
A001318:   0, 1,  2,  5,  7, 12, 15, 22,  26,  35,  40...
A000217:   0, 1,  3,  6, 10, 15, 21, 28,  36,  45,  55...
A085787:   0, 1,  4,  7, 13, 18, 27, 34,  46,  55,  70...
A001082:   0, 1,  5,  8, 16, 21, 33, 40,  56,  65,  85...
A118277:   0, 1,  6,  9, 19, 24, 39, 46,  66,  75, 100...
A074377:   0, 1,  7, 10, 22, 27, 45, 52,  76,  85, 115...
A195160:   0, 1,  8, 11, 25, 30, 51, 58,  86,  95, 130...
A195162:   0, 1,  9, 12, 28, 33, 57, 64,  96, 105, 145...
A195313:   0, 1, 10, 13, 31, 36, 63, 70, 106, 115, 160...
A195818:   0, 1, 11, 14, 34, 39, 69, 76, 116, 125, 175...
		

Crossrefs

Rows (0-11): 0 together with A008795, (truncated A008794), A001318, A000217, A085787, A001082, A118277, A074377, A195160, A195162, A195313, A195818
Columns (0-9): A000004, A000012, A001477, (truncated A000027), A016777, (truncated A008585), A016945, (truncated A016957), A017341, (truncated A017329).
Cf. A139600.
Showing 1-10 of 20 results. Next