A230276 Voids left after packing 5-curves coins patterns into fountain of coins with base n.
0, 1, 1, 6, 10, 16, 24, 34, 43, 57, 70, 85, 102, 121, 139, 162, 184, 208, 234, 262, 289, 321, 352, 385, 420, 457, 493, 534, 574, 616, 660, 706, 751, 801, 850, 901, 954, 1009, 1063, 1122, 1180, 1240, 1302, 1366, 1429
Offset: 1
Links
- Kival Ngaokrajang, Illustration of initial terms (V)
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
Crossrefs
Programs
-
Maple
A099837 := proc(n) op(modp(n,3)+1,[2,-1,-1]) ; end proc: A230276 := proc(n) -A099837(n)/3 + (-48*n+31+18*n^2+9*(-1)^n)/24 ; end proc: seq(A230276(n),n=1..40) ; # R. J. Mathar, Feb 28 2018
-
Mathematica
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 1, 1, 6, 10, 16}, 45] (* Jean-François Alcover, May 05 2023 *)
Formula
G.f.: x^2*(x^4 + 3*x^3 + 4*x^2 + 1)/((1-x)*(1-x^2)*(1-x^3)). - Ralf Stephan, Oct 17 2013
a(n) = (9*(-1)^n+18*n^2-48*n)/24 - A099837(n)/3. - R. J. Mathar, Feb 28 2018
Comments