cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A229093 The clubs patterns appearing in n X n coins.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
Offset: 0

Views

Author

Kival Ngaokrajang, Sep 13 2013

Keywords

Comments

On the Japanese TV show "Tsuki no Koibito", a girl told her boyfriend that she saw a heart in 4 coins. Actually there are a total of 6 distinct patterns appearing in 2 X 2 coins in which each pattern consists of a part of the perimeter of each coin and forms a continuous area.
a(n) is the number of clubs patterns appearing in n X n coins. It is also A008810(n-1), except for the third term. The inverse patterns (stars or voids between clubs) is A030511 (except the second term). See illustration in links.

Crossrefs

Cf. A008810, A030511, A074148 (heart patterns), A227906, A229154.

Programs

  • Mathematica
    CoefficientList[Series[(x^7 - 2 x^6 + x^5 - x^4 + x^3 - x^2 - 1)/((x - 1)^3 (x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 08 2013 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,0,1,2,4,6,9,12,17,22},70] (* Harvey P. Dale, Feb 05 2020 *)
  • PARI
    Vec(x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1)/((x-1)^3*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Oct 08 2013
    
  • PARI
    a(n) = ceil((n-1)^2/3) \\ Charles R Greathouse IV, Jan 06 2016

Formula

a(n) = ceiling((n-1)^2/3), a(0) = 0, a(4) = 4.
G.f.: x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Oct 07 2013

Extensions

More terms from Colin Barker, Oct 08 2013

A229154 The clubs patterns appearing in n X n coins, with rotation allowed.

Original entry on oeis.org

1, 2, 5, 8, 12, 16, 21, 27, 33, 40, 48, 56, 65, 75, 85, 96, 108, 120, 133, 147, 161, 176, 192, 208, 225, 243, 261, 280, 300, 320, 341, 363, 385, 408, 432, 456, 481, 507, 533, 560, 588, 616, 645, 675, 705, 736, 768, 800, 833, 867, 901, 936, 972, 1008, 1045
Offset: 2

Views

Author

Kival Ngaokrajang, Sep 15 2013

Keywords

Comments

On the Japanese TV show "Tsuki no Koibito", a girl told her boyfriend that she saw a heart in 4 coins. Actually there are a total of 6 distinct patterns appearing in 2 X 2 coins in which each pattern consists of a part of the perimeter of each coin and forms a continuous area.
a(n) is the number of clubs patterns appearing in n X n coins with rotation allowed. It is also A000212, except for the fourth term. The number of inverse patterns (stars or voids between clubs) is A143978 (except for the first term).

Crossrefs

Cf. A000212, A143978, A074148 (Heart patterns), A227906, A229093 (Clubs pattern, fixed Orientation).

Programs

  • Mathematica
    CoefficientList[Series[-(x^6 - 2 x^5 + x^4 - x^3 + 2 x^2 + 1)/((x - 1)^3 (x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 08 2013 *)
  • PARI
    Vec(-x^2*(x^6-2*x^5+x^4-x^3+2*x^2+1)/((x-1)^3*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Oct 08 2013

Formula

a(n) = floor(n^2/3), a(3) = 2.
From Colin Barker, Oct 08 2013: (Start)
a(n) = n^2/3 + (2/9)*cos((2*Pi*n)/3) - 2/9.
G.f.: -x^2*(x^6-2*x^5+x^4-x^3+2*x^2+1) / ((x-1)^3*(x^2+x+1)). (End)

Extensions

More terms from Colin Barker, Oct 08 2013

A230548 Twin hearts patterns packing into n X n coins.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 12, 15, 16, 24, 25, 28, 35, 40, 41, 54, 55, 60, 70, 77, 78, 96, 97, 104, 117, 126, 127, 150, 151, 160, 176, 187, 188, 216, 217, 228, 247, 260, 261, 294, 295, 308, 330, 345, 346, 384, 385, 400, 425, 442
Offset: 2

Views

Author

Kival Ngaokrajang, Oct 23 2013

Keywords

Comments

Twin hearts (6c4a type) is one of total 17 distinct patterns appearing in 3X2 coins where each pattern consists of 6 perimeter parts from each coin and forms a continuous area.
a(n) is the number of total twin hearts patterns (6c4a type: 6-curves cover 4 coins) packing into n X n coins with rotation not allowed. The total coins left after packing twin hearts patterns into n X n coins is A230549 and voids left is A230550. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620 (6-curves).

Formula

G.f.: x^2 * (x^10 + x^8 + 2*x^5 + 3*x^4 + 2*x^3 + 2*x^2 + x)/((1+x^3) * (1-x^3)^2 * (1-x^2)) (conjectured). - Ralf Stephan, Oct 30 2013

A230549 Coins left after packing twin hearts patterns into n X n coins.

Original entry on oeis.org

4, 5, 8, 13, 12, 21, 32, 33, 40, 57, 48, 69, 84, 85, 96, 125, 108, 141, 160, 161, 176, 217, 192, 237, 260, 261, 280, 333, 300, 357, 384, 385, 408, 473, 432, 501, 532, 533, 560, 637, 588, 669, 704, 705, 736, 825, 768, 861
Offset: 2

Views

Author

Kival Ngaokrajang, Oct 23 2013

Keywords

Comments

Twin hearts (6c4a type) is one of total 17 distinct patterns appearing in 3X2 coins where each pattern consists of 6 perimeter parts from each coin and forms a continuous area.
a(n) is total coins left after packing twin hearts patterns (6c4a type: 6-curves cover 4 coins) into n X n coins with rotation not allowed. The total twin hearts patterns is A230548 and voids left is A230550. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620 (6-curves).

Formula

a(n) = n^2 - 4*A230548(n).
G.f.: x^2 * (-3*x^10 - 4*x^8 + 3*x^7 + 8*x^6 + 4*x^5 - x^4 + 4*x^3 + 4*x^2 + 5*x + 4)/(1+x^3)*(1-x^3)^2*(1-x^2). (conjectured). - Ralf Stephan, Oct 30 2013

A230550 Voids left after packing twin hearts patterns into n X n coins.

Original entry on oeis.org

1, 2, 5, 10, 13, 22, 33, 40, 51, 68, 73, 94, 113, 126, 145, 174, 181, 214, 241, 260, 287, 328, 337, 382, 417, 442, 477, 530, 541, 598, 641, 672, 715, 780, 793, 862, 913, 950, 1001, 1078, 1093, 1174, 1233, 1276, 1335, 1424
Offset: 2

Views

Author

Kival Ngaokrajang, Oct 23 2013

Keywords

Comments

Twin hearts (6c4a type) is one of total 17 distinct patterns appearing in 3X2 coins where each pattern consists of 6 perimeter parts from each coin and forms a continuous area.
a(n) is the number of total voids left after packing twin hearts patterns (6c4a type: 6-curves cover 4 coins) into n X n coins with rotation not allowed. The total twin hearts patterns packing into n X n coins is A230548 and coins left is A230549. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620 (6-curves).

Formula

a(n) = (n-1)^2 - 2*A230548(n).
G.f.: x^2 * (-2*x^10 + x^9 + 2*x^8 + 8*x^7 + 11*x^6 + 8*x^5 + 6*x^4 + 7*x^3 + 4*x^2 + 2*x + 1)/((1+x^3)*(1-x^3)^2*(1-x^2)) (conjectured). - Ralf Stephan, Oct 30 2013

A231056 The maximum number of X patterns that can be packed into an n X n array of coins.

Original entry on oeis.org

0, 1, 1, 2, 4, 5, 8, 10, 13, 16, 20, 24, 29, 34, 40, 45, 51, 58, 65, 73, 80, 88, 97, 106, 116, 125, 135, 146, 157, 169, 180, 192, 205, 218, 232, 245, 259, 274, 289, 305, 320, 336, 353, 370, 388, 405, 423, 442, 461, 481, 500, 520, 541, 562, 584, 605, 627, 650, 673, 697, 720, 744, 769, 794
Offset: 2

Views

Author

Kival Ngaokrajang, Nov 03 2013

Keywords

Comments

The X pattern (8c5s2 type) is a pattern in which 8 curves cover 5 coins, and is one of a total of 13 such distinct patterns that appear in a tightly-packed 3 X 3 square array of coins of identical size; each of the 8 curves is a circular arc lying along the edge of one of the 5 coins, and the 8 curves are joined end-to-end to form a continuous area.
a(n) is the maximum number of X patterns that can be packed into an n X n array of coins. The total coins left after packing X patterns into an n X n array of coins is A231064 and voids left is A231065.
a(n) is also the maximum number of "+" patterns (8c5s1 type) that can be packed into an n X n array of coins. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620, A230548, A230549, A230550 (6-curves).

Formula

Empirical g.f.: -x^3*(x^15 -2*x^14 +x^13 -x^12 +2*x^11 -2*x^10 +2*x^9 -x^8 +x^5 -x^4 +x^3 +x^2 -x +1) / ((x -1)^3*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Nov 27 2013

A231064 Coins left after packing X patterns into an n X n array of coins.

Original entry on oeis.org

4, 4, 11, 15, 16, 24, 24, 31, 35, 41, 44, 49, 51, 55, 56, 64, 69, 71, 75, 76, 84, 89, 91, 95, 96, 104, 109, 111, 115, 116, 124, 129, 131, 135, 136, 144, 149, 151, 155, 156, 164, 169, 171, 175, 176, 184, 189, 191, 195, 196, 204, 209, 211, 215, 216, 224, 229, 231, 235, 236, 244, 249, 251
Offset: 2

Views

Author

Kival Ngaokrajang, Nov 03 2013

Keywords

Comments

The X pattern (8c5s2 type) is a pattern in which 8 curves cover 5 coins, and is one of a total of 13 such distinct patterns that appear in a tightly-packed 3 X 3 square array of coins of identical size; each of the 8 curves is a circular arc lying along the edge of one of the 5 coins, and the 8 curves are joined end-to-end to form a continuous area.
a(n) is the total number of coins left (the coins out side X patterns) after packing X patterns into an n X n array of coins. The maximum number of X patterns that can be packed into an n X n array of coins is A231056 and voids left is A231065.
a(n) is also the total number of coins left after packing "+" patterns (8c5s1 type) into an n X n array of coins. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620, A230548, A230549, A230550 (6-curves).

Formula

Empirical g.f.: x^2*(5*x^15 -5*x^14 -5*x^12 +5*x^11 -5*x^10 +5*x^9 +4*x^5 +x^4 +4*x^3 +7*x^2 +4) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Nov 27 2013

A231065 Voids left after packing X patterns into an of n X n array of coins.

Original entry on oeis.org

1, 0, 5, 8, 9, 16, 17, 24, 29, 36, 41, 48, 53, 60, 65, 76, 85, 92, 101, 108, 121, 132, 141, 152, 161, 176, 189, 200, 213, 224, 241, 256, 269, 284, 297, 316, 333, 348, 365, 380, 401, 420, 437, 456, 473, 496, 517, 536, 557, 576, 601, 624, 645, 668, 689, 716, 741, 764, 789, 812, 841, 868
Offset: 2

Views

Author

Kival Ngaokrajang, Nov 03 2013

Keywords

Comments

The X pattern (8c5s2 type) is a pattern in which 8 curves cover 5 coins, and is one of a total of 13 such distinct patterns that appear in a tightly-packed 3 X 3 square array of coins of identical size; each of the 8 curves is a circular arc lying along the edge of one of the 5 coins, and the 8 curves are joined end-to-end to form a continuous area.
a(n) is the total number of voids (spaces among coins) left after packing X patterns into an n X n array of coins. The maximum number of X patterns that can be packed into an n X n array of coins is A231056 and coins left is A231064.
a(n) is also the total number of voids left after packing "+" patterns (8c5s1 type) into an n X n array of coins. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620, A230548, A230549, A230550 (6-curves).

Formula

Empirical g.f.: x^2*(4*x^16 -8*x^15 +4*x^14 -4*x^13 +8*x^12 -8*x^11 +8*x^10 -4*x^9 +4*x^6 -5*x^5 +2*x^4 +2*x^3 -6*x^2 +2*x -1) / ((x -1)^3*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Nov 27 2013
Showing 1-8 of 8 results.