A217446 Sum of the squares of numbers obtained by digit permutations of the concatenation of first n numbers.
1, 585, 331668, 213208980, 156226437720, 129158041750920, 119164964083502400, 121503028361696976960, 135757575541042424323200, 165013333307050666667644800, 216831999996550400000012812800, 306342399999513113600000180544000, 463124479999926454528000002723302400
Offset: 1
Examples
a(1) = 1^2 = 1. a(2) = 12^2 + 21^2 = 585. a(3) = 123^2 + 132^2 + 213^2 + 231^2 + 312^2 + 321^2 = 331668.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A071268.
Programs
-
Maple
R:= n-> (10^n-1)/9: RP:= n-> (10^(2*n)-1)/99: a:= n-> (1/12)*(n+1)!*(n*RP(n)+(3*n+2)*R(n)^2): seq (a(n), n=1..15); # Alois P. Heinz, Oct 03 2012
Formula
a(n) = (1/12)*(n+1)!*(n*R'(n)+(3*n+2)*R(n)^2) with R(n) = (10^n-1)/9 and R'(n) = (10^(2*n)-1)/99.
Extensions
More terms from Alois P. Heinz, Oct 03 2012
Comments