Bridget Tenner has authored 18 sequences. Here are the ten most recent ones:
A363582
Number of admissible mesa sets among Stirling permutations of order n.
Original entry on oeis.org
1, 2, 3, 6, 12, 22, 44, 88, 169, 338, 676, 1322, 2644, 5288, 10433, 20866, 41732, 82736, 165472, 330944, 658012, 1316024, 2632048, 5242778, 10485556, 20971112, 41822049, 83644098, 167288196, 333885702, 667771404, 1335542808, 2667053601, 5334107202, 10668214404
Offset: 1
For n = 4, the a(4) = 6 admissible pinnacle sets for Stirling permutations of order 4 are {}, {2}, {3}, {4}, {2,4}, and {3,4}.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, "Mesas of Stirling permutations," preprint.
-
a:= proc(n) option remember; `if`(n<4, n, (2*n*(2*n-3)*
a(n-1)+27*(n-4)*(n-2)*(a(n-3)/2-a(n-4)))/(n*(2*n-3)))
end:
seq(a(n), n=1..45); # Alois P. Heinz, Jun 13 2023
A359066
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,k)*binomial(n-1-k,floor((n-1)/2) - k).
Original entry on oeis.org
1, 1, 5, 7, 31, 49, 209, 351, 1471, 2561, 10625, 18943, 78079, 141569, 580865, 1066495, 4361215, 8085505, 32978945, 61616127, 250806271, 471556097, 1916280833, 3621830655, 14698053631, 27902803969, 113104519169, 215530668031, 872801042431, 1668644405249, 6751535300609
Offset: 1
For n = 3, the a(3) = 5 admissible pinnacle sets in S_3^B are {}, {-1}, {1}, {2}, {3}.
-
a := n -> add(binomial(n, k)*binomial(n-1-k, iquo(n-1, 2) - k), k = 0..iquo(n-1,2)):
# Alternative:
a := n -> binomial(n-1, floor((n-1)/2))*hypergeom([-n, ceil((1-n)/2)], [1-n], -1);
seq(simplify(a(n)), n=3..31); # Peter Luschny, Jan 03 2023
-
Array[Sum[Binomial[#, k]*Binomial[# - 1 - k, Floor[(# - 1)/2] - k], {k, 0, Floor[(# - 1)/2]}] &, 31] (* Michael De Vlieger, Jan 03 2023 *)
-
a(n) = sum(k=0, (n-1)\2, binomial(n,k)*binomial(n-1-k, (n-1)\2 - k)) \\ Andrew Howroyd, Jan 02 2023
A359067
a(2*n) = Sum_{k=0..n-1} binomial(2*n,k) binomial(2*n-1-k, n-1-k). a(2*n+1) = (Sum_{k=0..n} binomial(2*n+1,k) binomial(2*n-k, n-k)) - binomial(2*n-1, n).
Original entry on oeis.org
0, 1, 4, 7, 28, 49, 199, 351, 1436, 2561, 10499, 18943, 77617, 141569, 579149, 1066495, 4354780, 8085505, 32954635, 61616127, 250713893, 471556097, 1915928117, 3621830655, 14696701553, 27902803969, 113099318869, 215530668031, 872780984131, 1668644405249, 6751457741849
Offset: 1
For n = 3, the a(3) = 4 admissible pinnacle sets in S_3^D are {}, {1}, {2}, {3}.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO] (2023).
-
a := n -> if irem(n - 1, 2) = 1 then binomial(n, n/2 - 1)*hypergeom([n/2 + 1, -n/2 + 1], [n/2 + 2], -1) else binomial(n + 1, n/2 + 1/2)*hypergeom([n/2 + 1/2, -n/2 + 1/2], [n/2 + 3/2], -1)/2 - binomial(n - 2, n/2 - 1/2) fi:
seq(simplify(a(n)), n = 3..31); # Peter Luschny, Jan 03 2023
A331347
Number of permutations w in S_n that form Boolean intervals [s, w] in the Bruhat order for every simple reflection s in the support of w.
Original entry on oeis.org
1, 2, 6, 15, 37, 93, 238, 616, 1604, 4189, 10955, 28667, 75036, 196430, 514242, 1346283, 3524593, 9227481, 24157834, 63246004, 165580160, 433494457, 1134903191, 2971215095, 7778742072, 20365011098, 53316291198, 139583862471, 365435296189, 956722026069
Offset: 1
a(4) = 15 because the permutations with this property in S_4 are all permutations of length < 4.
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1-3*x+4*x^2-4*x^3+x^4)/((1-x)^2*(1-3*x+x^2)))); // Marius A. Burtea, Jan 15 2020
-
Join[{1},Table[Fibonacci[2n-1]+n-2,{n,2,30}]] (* or *) LinearRecurrence[ {5,-8,5,-1},{1,2,6,15,37},30] (* Harvey P. Dale, Feb 21 2020 *)
-
Vec(x*(1 - 3*x + 4*x^2 - 4*x^3 + x^4) / ((1 - x)^2*(1 - 3*x + x^2)) + O(x^30)) \\ Colin Barker, Jan 14 2020
A330503
Number of Sós permutations of {0,1,...,n}.
Original entry on oeis.org
2, 6, 16, 30, 60, 84, 144, 198, 280, 352, 504, 598, 812, 960, 1152, 1360, 1728, 1938, 2400, 2688, 3080, 3450, 4128, 4500, 5200, 5724, 6440, 7018, 8100, 8618, 9856, 10692, 11696, 12600, 13824, 14652, 16416, 17550, 18960, 20090, 22260, 23306, 25696, 27180, 28888
Offset: 1
For n = 3, the a(3) = 16 Farey functions of {0,1,2,3} are {0123, 3012, 2301, 1230, 0312, 2031, 1203, 3120, 0213, 3021, 1302, 2130, 0321, 1032, 2103, 3210}.
- S. Bockting-Conrad, Y. Kashina, T. K. Petersen, and B. E. Tenner, Sós permutations, arXiv:2007.01132 [math.CO], 2020.
-
MapIndexed[(First[#2] + 1) #1 &, Accumulate@ Array[EulerPhi, 45]] (* Michael De Vlieger, Dec 16 2019 *)
-
a(n)={(n+1)*sum(k=1, n, eulerphi(k))} \\ Andrew Howroyd, Dec 20 2019
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A330503(n):
if n == 0:
return 0
c, j = 0, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*(2*A330503(k1)//(k1+1)-1)
j, k1 = j2, n//j2
return (n+1)*(n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 29 2021
A320944
a(n) is the number of perimeter tiles among all rhombic tilings of the 2n-gon.
Original entry on oeis.org
1, 6, 24, 200, 3216
Offset: 2
a(4) = 24 because among the eight rhombic tilings of the octagon, 24 perimeter rhombi appear.
A320946
a(n) is the number of left-perimeter tiles among all rhombic tilings of the 2n-gon.
Original entry on oeis.org
1, 2, 9, 80, 1340
Offset: 2
a(4) = 9 because among the eight rhombic tilings of the octagon, 9 left-perimeter rhombi appear.
A320945
a(n) is the number of top-perimeter tiles among all rhombic tilings of the 2n-gon.
Original entry on oeis.org
1, 1, 3, 20, 268
Offset: 2
a(4) = 3 because among the eight rhombic tilings of the octagon, 3 top-perimeter rhombi appear.
A320947
a(n) is the number of dominoes, among all domino tilings of the 2 X n rectangle, sharing a length-2 side with the boundary of the rectangle.
Original entry on oeis.org
1, 4, 8, 16, 30, 56, 102, 184, 328, 580, 1018, 1776, 3082, 5324, 9160, 15704, 26838, 45736, 77742, 131840, 223112, 376844, 635378, 1069536, 1797650, 3017236, 5057672, 8467744, 14161038, 23657240, 39482358, 65832136, 109671112, 182552404, 303629290
Offset: 1
a(4) = 16 because among the five domino tilings of the 2 X 4 rectangle, 16 dominoes share a length 2 side with the boundary.
-
Rest@ CoefficientList[Series[x (1 + 2 x - x^2 - 2 x^3 - x^4)/(1 - x - x^2)^2, {x, 0, 35}], x] (* Michael De Vlieger, Nov 05 2018 *)
-
Vec(x*(1 + 2*x - x^2 - 2*x^3 - x^4) / (1 - x - x^2)^2 + O(x^40)) \\ Colin Barker, Nov 02 2018
A290954
The number of permutations in S_n for which the number of reduced words is minimized with respect to the numbers of braid and commutation classes: |R(w)| = |B(w)| + |C(w)| - 1.
Original entry on oeis.org
1, 2, 6, 23, 65, 177, 506, 1551, 5041, 17049, 59131, 208469, 743491, 2675189, 9695778, 35358815, 129646177, 477640361, 1767265159, 6564122733, 24466269715, 91482566757, 343059617231, 1289904151413, 4861946406095, 18367353077397, 69533550921901, 263747951756961, 1002242216658727, 3814986502100477
Offset: 1
a(3) = 6 because all six permutations in S_3 have this property.
Comments