cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Bridget Tenner

Bridget Tenner's wiki page.

Bridget Tenner has authored 18 sequences. Here are the ten most recent ones:

A363582 Number of admissible mesa sets among Stirling permutations of order n.

Original entry on oeis.org

1, 2, 3, 6, 12, 22, 44, 88, 169, 338, 676, 1322, 2644, 5288, 10433, 20866, 41732, 82736, 165472, 330944, 658012, 1316024, 2632048, 5242778, 10485556, 20971112, 41822049, 83644098, 167288196, 333885702, 667771404, 1335542808, 2667053601, 5334107202, 10668214404
Offset: 1

Author

Bridget Tenner, Jun 10 2023

Keywords

Examples

			For n = 4, the a(4) = 6 admissible pinnacle sets for Stirling permutations of order 4 are {}, {2}, {3}, {4}, {2,4}, and {3,4}.
		

References

  • Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, "Mesas of Stirling permutations," preprint.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, n, (2*n*(2*n-3)*
          a(n-1)+27*(n-4)*(n-2)*(a(n-3)/2-a(n-4)))/(n*(2*n-3)))
        end:
    seq(a(n), n=1..45);  # Alois P. Heinz, Jun 13 2023

Formula

Let n = 3*k+r, where r is in {0,1,2}, and let C_(x,y) be the rational Catalan numbers (A328901/A328902). Then a(n) = 2^(n-1) - Sum_{i=0..k-1} 2^(3*i+r)*C_(2*(k-i)-1,k-i).

Extensions

More terms from Alois P. Heinz, Jun 13 2023

A359066 a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,k)*binomial(n-1-k,floor((n-1)/2) - k).

Original entry on oeis.org

1, 1, 5, 7, 31, 49, 209, 351, 1471, 2561, 10625, 18943, 78079, 141569, 580865, 1066495, 4361215, 8085505, 32978945, 61616127, 250806271, 471556097, 1916280833, 3621830655, 14698053631, 27902803969, 113104519169, 215530668031, 872801042431, 1668644405249, 6751535300609
Offset: 1

Author

Bridget Tenner, Dec 15 2022

Keywords

Comments

For n >= 3, this is the number of admissible pinnacle sets in the group S_n^B of signed permutations.
The even-indexed terms appear in A240721 and the odd-indexed terms appear in A178792.

Examples

			For n = 3, the a(3) = 5 admissible pinnacle sets in S_3^B are {}, {-1}, {1}, {2}, {3}.
		

Crossrefs

Programs

  • Maple
    a := n -> add(binomial(n, k)*binomial(n-1-k, iquo(n-1, 2) - k), k = 0..iquo(n-1,2)):
    # Alternative:
    a := n -> binomial(n-1, floor((n-1)/2))*hypergeom([-n, ceil((1-n)/2)], [1-n], -1);
    seq(simplify(a(n)), n=3..31); # Peter Luschny, Jan 03 2023
  • Mathematica
    Array[Sum[Binomial[#, k]*Binomial[# - 1 - k, Floor[(# - 1)/2] - k], {k, 0, Floor[(# - 1)/2]}] &, 31] (* Michael De Vlieger, Jan 03 2023 *)
  • PARI
    a(n) = sum(k=0, (n-1)\2, binomial(n,k)*binomial(n-1-k, (n-1)\2 - k)) \\ Andrew Howroyd, Jan 02 2023

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,k)*binomial(n-1-k,floor((n-1)/2) - k).
a(n) = binomial(n-1, floor((n-1)/2))*hypergeom([-n, ceil((1 -n)/2)], [1 - n], -1). - Peter Luschny, Jan 03 2023

A359067 a(2*n) = Sum_{k=0..n-1} binomial(2*n,k) binomial(2*n-1-k, n-1-k). a(2*n+1) = (Sum_{k=0..n} binomial(2*n+1,k) binomial(2*n-k, n-k)) - binomial(2*n-1, n).

Original entry on oeis.org

0, 1, 4, 7, 28, 49, 199, 351, 1436, 2561, 10499, 18943, 77617, 141569, 579149, 1066495, 4354780, 8085505, 32954635, 61616127, 250713893, 471556097, 1915928117, 3621830655, 14696701553, 27902803969, 113099318869, 215530668031, 872780984131, 1668644405249, 6751457741849
Offset: 1

Author

Bridget Tenner, Dec 15 2022

Keywords

Comments

For n >= 3, the number of admissible pinnacle sets in the group S_n^D of even-signed permutations.
The even-indexed terms match the even-indexed terms of A359066. The odd-indexed terms differ from the odd-indexed terms of A359066 by binomial(2*n-1, n).

Examples

			For n = 3, the a(3) = 4 admissible pinnacle sets in S_3^D are {}, {1}, {2}, {3}.
		

Crossrefs

Programs

  • Maple
    a := n -> if irem(n - 1, 2) = 1 then binomial(n, n/2 - 1)*hypergeom([n/2 + 1, -n/2 + 1], [n/2 + 2], -1) else binomial(n + 1, n/2 + 1/2)*hypergeom([n/2 + 1/2, -n/2 + 1/2], [n/2 + 3/2], -1)/2 - binomial(n - 2, n/2 - 1/2) fi:
    seq(simplify(a(n)), n = 3..31); # Peter Luschny, Jan 03 2023

Formula

a(2*n) = Sum_{k=0..n-1} binomial(2*n,k) binomial(2*n-1-k, n-1-k).
a(2*n+1) = (Sum_{k=0..n} binomial(2*n+1,k) binomial(2*n-k, n-k)) - binomial(2*n-1, n).
a(n) = A240721((n-2)/2) if n-1 is odd and otherwise A178792((n-1)/2) - binomial(2*n - 1, n). - Peter Luschny, Jan 03 2023

A331347 Number of permutations w in S_n that form Boolean intervals [s, w] in the Bruhat order for every simple reflection s in the support of w.

Original entry on oeis.org

1, 2, 6, 15, 37, 93, 238, 616, 1604, 4189, 10955, 28667, 75036, 196430, 514242, 1346283, 3524593, 9227481, 24157834, 63246004, 165580160, 433494457, 1134903191, 2971215095, 7778742072, 20365011098, 53316291198, 139583862471, 365435296189, 956722026069
Offset: 1

Author

Bridget Tenner, Jan 14 2020

Keywords

Examples

			a(4) = 15 because the permutations with this property in S_4 are all permutations of length < 4.
		

Crossrefs

Cf. A001519.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1-3*x+4*x^2-4*x^3+x^4)/((1-x)^2*(1-3*x+x^2)))); // Marius A. Burtea, Jan 15 2020
  • Mathematica
    Join[{1},Table[Fibonacci[2n-1]+n-2,{n,2,30}]] (* or *) LinearRecurrence[ {5,-8,5,-1},{1,2,6,15,37},30] (* Harvey P. Dale, Feb 21 2020 *)
  • PARI
    Vec(x*(1 - 3*x + 4*x^2 - 4*x^3 + x^4) / ((1 - x)^2*(1 - 3*x + x^2)) + O(x^30)) \\ Colin Barker, Jan 14 2020
    

Formula

a(n) = Fibonacci(2n-1) + n - 2 = A001519(n) + n - 2.
From Colin Barker, Jan 14 2020: (Start)
G.f.: x*(1 - 3*x + 4*x^2 - 4*x^3 + x^4) / ((1 - x)^2*(1 - 3*x + x^2)).
a(n) = 5*a(n-1) - 8*a(n-2) + 5*a(n-3) - a(n-4) for n>5.
(End)
E.g.f.: 1 + exp((1/2)*(3-sqrt(5))*x)*(3 + sqrt(5) + 2*exp(sqrt(5)*x))/(5 + sqrt(5)) + exp(x)*(x - 2). - Stefano Spezia, Jan 15 2020

A330503 Number of Sós permutations of {0,1,...,n}.

Original entry on oeis.org

2, 6, 16, 30, 60, 84, 144, 198, 280, 352, 504, 598, 812, 960, 1152, 1360, 1728, 1938, 2400, 2688, 3080, 3450, 4128, 4500, 5200, 5724, 6440, 7018, 8100, 8618, 9856, 10692, 11696, 12600, 13824, 14652, 16416, 17550, 18960, 20090, 22260, 23306, 25696, 27180, 28888
Offset: 1

Author

Bridget Tenner, Dec 16 2019

Keywords

Examples

			For n = 3, the a(3) = 16 Farey functions of {0,1,2,3} are {0123, 3012, 2301, 1230, 0312, 2031, 1203, 3120, 0213, 3021, 1302, 2130, 0321, 1032, 2103, 3210}.
		

Crossrefs

Cf. A002088.

Programs

  • Mathematica
    MapIndexed[(First[#2] + 1) #1 &, Accumulate@ Array[EulerPhi, 45]] (* Michael De Vlieger, Dec 16 2019 *)
  • PARI
    a(n)={(n+1)*sum(k=1, n, eulerphi(k))} \\ Andrew Howroyd, Dec 20 2019
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A330503(n):
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(2*A330503(k1)//(k1+1)-1)
            j, k1 = j2, n//j2
        return (n+1)*(n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 29 2021

Formula

a(n) = (n+1) * Sum_{k=1..n} phi(k), where phi(k) is Euler's totient function.
a(n) = (n+1) * A002088(n).

Extensions

More terms from Michael De Vlieger, Dec 16 2019

A320944 a(n) is the number of perimeter tiles among all rhombic tilings of the 2n-gon.

Original entry on oeis.org

1, 6, 24, 200, 3216
Offset: 2

Author

Bridget Tenner, Oct 24 2018

Keywords

Comments

Tiles and polygons all have sides of length 1, as in A006245.

Examples

			a(4) = 24 because among the eight rhombic tilings of the octagon, 24 perimeter rhombi appear.
		

Crossrefs

Formula

a(n) = 2*n*A320945(n) for n > 2.

A320946 a(n) is the number of left-perimeter tiles among all rhombic tilings of the 2n-gon.

Original entry on oeis.org

1, 2, 9, 80, 1340
Offset: 2

Author

Bridget Tenner, Oct 24 2018

Keywords

Comments

Also the number of right-perimeter tiles among all rhombic tilings of the 2n-gon. Tiles and polygons all have sides of length 1, as in A006245.

Examples

			a(4) = 9 because among the eight rhombic tilings of the octagon, 9 left-perimeter rhombi appear.
		

Crossrefs

Formula

a(n) = (n-1) * A320945(n).

A320945 a(n) is the number of top-perimeter tiles among all rhombic tilings of the 2n-gon.

Original entry on oeis.org

1, 1, 3, 20, 268
Offset: 2

Author

Bridget Tenner, Oct 24 2018

Keywords

Comments

Also the number of bottom-perimeter tiles among all rhombic tilings of the 2n-gon. Tiles and polygons all have sides of length 1, as in A006245.

Examples

			a(4) = 3 because among the eight rhombic tilings of the octagon, 3 top-perimeter rhombi appear.
		

Crossrefs

A320947 a(n) is the number of dominoes, among all domino tilings of the 2 X n rectangle, sharing a length-2 side with the boundary of the rectangle.

Original entry on oeis.org

1, 4, 8, 16, 30, 56, 102, 184, 328, 580, 1018, 1776, 3082, 5324, 9160, 15704, 26838, 45736, 77742, 131840, 223112, 376844, 635378, 1069536, 1797650, 3017236, 5057672, 8467744, 14161038, 23657240, 39482358, 65832136, 109671112, 182552404, 303629290
Offset: 1

Author

Bridget Tenner, Oct 24 2018

Keywords

Comments

a(n) is also the number of dominoes, among all domino tilings of the 2 x n rectangle, sharing a contiguous path of length at least 2 with the boundary of the rectangle.

Examples

			a(4) = 16 because among the five domino tilings of the 2 X 4 rectangle, 16 dominoes share a length 2 side with the boundary.
		

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 2 x - x^2 - 2 x^3 - x^4)/(1 - x - x^2)^2, {x, 0, 35}], x] (* Michael De Vlieger, Nov 05 2018 *)
  • PARI
    Vec(x*(1 + 2*x - x^2 - 2*x^3 - x^4) / (1 - x - x^2)^2 + O(x^40)) \\ Colin Barker, Nov 02 2018

Formula

a(n) = a(n-1) + a(n-2) + 2*Fibonacci(n-1) for n > 3.
From Colin Barker, Nov 02 2018: (Start)
G.f.: x*(1 + 2*x - x^2 - 2*x^3 - x^4) / (1 - x - x^2)^2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>5.
a(n) = 2^(1-n)*(-4*sqrt(5)*((1-sqrt(5))^n - (1+sqrt(5))^n) + 5*((1-sqrt(5))^n + (1+sqrt(5))^n)*n) / 25 for n>1.
(End)

A290954 The number of permutations in S_n for which the number of reduced words is minimized with respect to the numbers of braid and commutation classes: |R(w)| = |B(w)| + |C(w)| - 1.

Original entry on oeis.org

1, 2, 6, 23, 65, 177, 506, 1551, 5041, 17049, 59131, 208469, 743491, 2675189, 9695778, 35358815, 129646177, 477640361, 1767265159, 6564122733, 24466269715, 91482566757, 343059617231, 1289904151413, 4861946406095, 18367353077397, 69533550921901, 263747951756961, 1002242216658727, 3814986502100477
Offset: 1

Author

Bridget Tenner, Aug 15 2017

Keywords

Examples

			a(3) = 6 because all six permutations in S_3 have this property.
		

Crossrefs

Formula

a(1) = 1, a(2) = 2, and a(n) = C(n) + (n^3 - 3n^2 + 8n - 21)/3 for n > 2, where C(n) is the n-th Catalan number.