Mohamed Bouhamida has authored 92 sequences. Here are the ten most recent ones:
A331265
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 31^2)^2 = y^2.
Original entry on oeis.org
0, 279, 656, 1139, 1860, 2883, 4340, 6419, 9156, 13299, 19220, 27683, 39780, 55719, 79856, 114359, 163680, 234183, 327080, 467759, 668856, 956319, 1367240, 1908683, 2728620, 3900699, 5576156, 7971179, 11126940, 15905883, 22737260, 32502539, 46461756, 64854879, 92708600, 132524783
Offset: 1
For p=31 (m=4) the first five (5) consecutive solutions are (0, 961), (279, 1271), (656, 1745), (1139, 2389), (1860, 3379).
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,6,-6,0,0,0,-1,1).
Cf.
A066436 (Primes of the form 2*m^2 - 1).
-
I:=[0, 279, 656, 1139, 1860, 2883, 4340, 6419, 9156, 13299]; [n le 10 select I[n] else 6*Self(n-5) - Self(n-10)+1922: n in [1..100]];
-
LinearRecurrence[{1, 0, 0, 0, 6, -6, 0, 0, 0, -1, 1}, {0, 279, 656, 1139, 1860, 2883, 4340, 6419, 9156, 13299, 19220}, 36] (* Jean-François Alcover, Feb 12 2020 *)
-
concat(0, Vec(x^2*(279 + 377*x + 483*x^2 + 721*x^3 + 1023*x^4 - 217*x^5 - 183*x^6 - 161*x^7 - 183*x^8 - 217*x^9) / ((1 - x)*(1 - 6*x^5 + x^10)) + O(x^30))) \\ Colin Barker, Feb 12 2020
A332000
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 47^2)^2 = y^2.
Original entry on oeis.org
0, 752, 1820, 2231, 3995, 6627, 10575, 16511, 18840, 28952, 44180, 67116, 101664, 115227, 174135, 262871, 396539, 597891, 676940, 1020276, 1537464, 2316536, 3490100, 3950831, 5951939, 8966331, 13507095, 20347127, 23032464, 34695776, 52264940, 78730452, 118597080, 134248371
Offset: 1
For p=47 (m=7) the first five (5) consecutive solutions are (0, 2209), (752, 3055), (1820, 4421), (2231, 4969), (3995, 7379).
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,6,-6,0,0,0,-1,1).
Cf.
A028871 (Primes of the form m^2 - 2).
-
I:=[0, 752, 1820, 2231, 3995, 6627, 10575, 16511, 18840, 28952]; [n le 10 select I[n] else 6*Self(n-5) - Self(n-10)+4418: n in [1..100]];
-
LinearRecurrence[{1, 0, 0, 0, 6, -6, 0, 0, 0, -1, 1}, {0, 752, 1820, 2231, 3995, 6627, 10575, 16511, 18840, 28952, 44180}, 40] (* Jean-François Alcover, Feb 08 2020 *)
-
concat(0, Vec(x^2*(752 + 1068*x + 411*x^2 + 1764*x^3 + 2632*x^4 - 564*x^5 - 472*x^6 - 137*x^7 - 472*x^8 - 564*x^9) / ((1 - x)*(1 - 6*x^5 + x^10)) + O(x^40))) \\ Colin Barker, Feb 04 2020
A309998
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 529)^2 = y^2.
Original entry on oeis.org
0, 276, 287, 740, 759, 1587, 3059, 3120, 5687, 5796, 10580, 19136, 19491, 34440, 35075, 62951, 112815, 114884, 202011, 205712, 368184, 658812, 670871, 1178684, 1200255, 2147211, 3841115, 3911400, 6871151, 6996876, 12516140, 22388936, 22798587, 40049280, 40782059, 72950687
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,6,-6,0,0,0,-1,1).
-
Rest@ CoefficientList[Series[x^2*(276 + 11 x + 453 x^2 + 19 x^3 + 828 x^4 - 184 x^5 - 5 x^6 - 151 x^7 - 5 x^8 - 184 x^9)/((1 - x) (1 - 6 x^5 + x^10)), {x, 0, 36}], x] (* Michael De Vlieger, Sep 29 2019 *)
-
concat(0, Vec(x^2*(276 + 11*x + 453*x^2 + 19*x^3 + 828*x^4 - 184*x^5 - 5*x^6 - 151*x^7 - 5*x^8 - 184*x^9) / ((1 - x)*(1 - 6*x^5 + x^10)) + O(x^40))) \\ Colin Barker, Aug 27 2019
A164643
Semiprimes pq with pq - 1 divisible by p + q.
Original entry on oeis.org
6, 21, 301, 697, 1333, 1909, 2041, 3901, 24601, 26977, 96361, 130153, 163201, 250321, 275833, 296341, 389593, 486877, 495529, 542413, 808861, 1005421, 1005649, 1055833, 1063141, 1232053, 1284121, 1403221, 1618597, 1787917, 2287933, 2462881, 2488201, 2666437
Offset: 1
-
isA001358 := proc(n) RETURN ( numtheory[bigomega](n) =2 ) ; end:
isA164643 := proc(n) if isA001358(n) then p := op(1,op(1,ifactors(n)[2]) ) ; q := n/p ; if (p*q-1) mod (p+q) =0 then true; else false; fi; else false; fi; end:
for n from 4 to 3000000 do if isA164643(n) then print(n) ; fi; od: # R. J. Mathar, Aug 24 2009
-
dsQ[n_]:=Module[{prs=Transpose[FactorInteger[n]][[1]]},Divisible[n-1, Total[prs]]]; Select[Select[Range[2000000], PrimeOmega[#] ==2&], dsQ] (* Harvey P. Dale, Jun 15 2011 *)
A164698
Semiprimes pq such that pq - 1 divides p^2 + q^2 + 2.
Original entry on oeis.org
6, 21, 26, 51, 1157, 372101, 1288005205276048901
Offset: 1
The semiprime 6 = 2*3 is in the sequence because 2*3 - 1 = 5 divides 2^2 + 3^2 + 2 = 15.
-
isA001358 := proc(n) RETURN ( numtheory[bigomega](n) =2 ) ; end:
isA164698 := proc(n) if isA001358(n) then p := op(1,op(1,ifactors(n)[2]) ) ; q := n/p ; if (p^2+q^2+2) mod (p*q-1) = 0 then true; else false; fi; else false; fi; end:
for n from 4 to 3000000 do if isA164698(n) then print(n, ifactors(n)) ; fi; od: # R. J. Mathar, Aug 24 2009
A140362
Semiprimes pq that divide the sum of the squares of their divisors, 1+p^2+q^2+(pq)^2.
Original entry on oeis.org
10 divides (1^2 + 2^2 + 5^2) giving 3 - the number of proper divisors of semiprime 10.
65 divides (1^2 + 5^2 + 13^2) giving 3 - the number of proper divisors of semiprime 65.
20737 divides (1^2 + 89^2 + 233^2) giving 3 - the number of proper divisors of semiprime 20737.
- T. D. Noe, Table of n, a(n) for n=1..5
- T. Cai, D. Chen, and Y. Zhang, Perfect numbers and Fibonacci primes, arXiv:1310.0898 [math.NT], 2013-2014.
- T. Cai, D. Chen, and Y. Zhang, Perfect numbers and Fibonacci primes (II), arXiv:1406.5684 [math.NT], 2014 (see case m=1 in Table 1).
A135432
a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) - a(n-5) with a(0)=0, a(1)=1, a(2)=2, a(3)=3 and a(4)=4.
Original entry on oeis.org
0, 1, 2, 3, 4, 10, 18, 33, 62, 119, 222, 418, 788, 1485, 2794, 5263, 9912, 18666, 35150, 66197, 124662, 234763, 442106, 832578, 1567912, 2952697, 5560530, 10471611, 19720172, 37137098, 69936714, 131705065, 248027438
Offset: 0
-
LinearRecurrence[{1, 1, 1, 1, -1}, {0, 1, 2, 3, 4}, 50] (* G. C. Greubel, Oct 14 2016 *)
A135431
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) with a(0)=0, a(1)=1, a(2)=2 and a(3)=3.
Original entry on oeis.org
0, 1, 2, 3, 6, 10, 17, 30, 51, 88, 152, 261, 450, 775, 1334, 2298, 3957, 6814, 11735, 20208, 34800, 59929, 103202, 177723, 306054, 527050, 907625, 1563006, 2691627, 4635208, 7982216, 13746045, 23671842, 40764895, 70200566, 120891258, 208184877, 358511806
Offset: 0
-
LinearRecurrence[{1, 1, 1, -1}, {0, 1, 2, 3}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
nxt[{a_,b_,c_,d_}]:={b,c,d,d+c+b-a}; NestList[nxt,{0,1,2,3},40][[All,1]] (* Harvey P. Dale, Feb 28 2021 *)
A133360
Number of surjections from an n-element set to a nine-element set.
Original entry on oeis.org
362880, 16329600, 419126400, 8083152000, 130456085760, 1863435974400, 24359586451200, 297846188640000, 3457819037312640, 38528927611574400, 415357755774998400, 4358654246117808000, 44733116259693227520
Offset: 9
A133132
Number of surjections from an n-element set to a ten-element set.
Original entry on oeis.org
3628800, 199584000, 6187104000, 142702560000, 2731586457600, 45950224320000, 703098107712000, 10009442963520000, 134672620008326400, 1732015476199008000, 21473732319740064000, 258323865658578720000
Offset: 10
- Vincenzo Librandi, Table of n, a(n) for n = 10..1000
- Index entries for linear recurrences with constant coefficients, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).
-
[10^n-10*9^n+45*8^n-120*7^n+210*6^n-252*5^n+210*4^n-120*3^n+45*2^n-10: n in [10..30]]; // Vincenzo Librandi, Apr 11 2012
-
With[{nn=30},Drop[CoefficientList[Series[(Exp[x]-1)^10,{x,0,nn}],x] Range[0,nn]!,10]] (* Harvey P. Dale, Sep 01 2016 *)
-
sum(k=1,10,(-1)^(10-k)*binomial(10,k)*k^n)
Comments