cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A332000 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 47^2)^2 = y^2.

Original entry on oeis.org

0, 752, 1820, 2231, 3995, 6627, 10575, 16511, 18840, 28952, 44180, 67116, 101664, 115227, 174135, 262871, 396539, 597891, 676940, 1020276, 1537464, 2316536, 3490100, 3950831, 5951939, 8966331, 13507095, 20347127, 23032464, 34695776, 52264940, 78730452, 118597080, 134248371
Offset: 1

Views

Author

Mohamed Bouhamida, Feb 04 2020

Keywords

Comments

For the generic case x^2 + (x + p^2)^2 = y^2 with p = m^2 - 2 a (prime) number in A028871, m>=7 (means p>=47), the first five consecutive solutions are: (0; p^2), (2*m^3+2*m^2-4*m-4; m^4+2*m^3-4*m-4), (4*m^3+8*m^2+8*m; m^4+4*m^3+12*m^2+8*m+4), (3*m^4-20*m^3+44*m^2-40*m+12; 5*m^4-28*m^3+60*m^2-56*m+20), (3*m^4-10*m^3+2*m^2+20*m-16; 5*m^4-14*m^3+28*m-20) and the other solutions are defined by: (X(n); Y(n))= (3*X(n-5)+2*Y(n-5)+p^2; 4*X(n-5)+3*Y(n-5)+2*p^2).
X(n) = 6*X(n-5) - X(n-10) + 2*p^2, and Y(n) = 6*Y(n-5) - Y(n-10) (can be easily proved using X(n) = 3*X(n-5) + 2*Y(n-5) + p^2, and Y(n) = 4*X(n-5) + 3*Y(n-5) + 2*p^2).

Examples

			For p=47 (m=7) the first five (5) consecutive solutions are (0, 2209), (752, 3055), (1820, 4421), (2231, 4969), (3995, 7379).
		

Crossrefs

Cf. A028871 (Primes of the form m^2 - 2).
Solutions x to x^2+(x+p^2)^2=y^2: A118554 (p=7), A207059 (p=17), A309998 (p=23), A331265 (p=31), this sequence (p=47).

Programs

  • Magma
    I:=[0, 752, 1820, 2231, 3995, 6627, 10575, 16511, 18840, 28952]; [n le 10 select I[n] else 6*Self(n-5) - Self(n-10)+4418: n in [1..100]];
    
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 6, -6, 0, 0, 0, -1, 1}, {0, 752, 1820, 2231, 3995, 6627, 10575, 16511, 18840, 28952, 44180}, 40] (* Jean-François Alcover, Feb 08 2020 *)
  • PARI
    concat(0, Vec(x^2*(752 + 1068*x + 411*x^2 + 1764*x^3 + 2632*x^4 - 564*x^5 - 472*x^6 - 137*x^7 - 472*x^8 - 564*x^9) / ((1 - x)*(1 - 6*x^5 + x^10)) + O(x^40))) \\ Colin Barker, Feb 04 2020

Formula

a(n) = 6*a(n-5) - a(n-10) + 4418 for n >= 11; a(1)=0, a(2)=752, a(3)=1820, a(4)=2231, a(5)=3995, a(6)=6627, a(7)=10575, a(8)=16511, a(9)=18840, a(10)=28952.
From Colin Barker, Feb 04 2020: (Start)
G.f.: x^2*(752 + 1068*x + 411*x^2 + 1764*x^3 + 2632*x^4 - 564*x^5 - 472*x^6 - 137*x^7 - 472*x^8 - 564*x^9) / ((1 - x)*(1 - 6*x^5 + x^10)).
a(n) = a(n-1) + 6*a(n-5) - 6*a(n-6) - a(n-10) + a(n-11) for n>11.
(End)
Showing 1-1 of 1 results.