cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A190275 Semiprimes of the form p*(p^2 - p + 1).

Original entry on oeis.org

6, 21, 301, 2041, 296341, 486877, 2666437, 3420301, 4304341, 7152001, 38159521, 42387097, 54296677, 95235601, 158048281, 229971241, 265434901, 383712781, 454166017, 775307917, 972261181, 1063290841, 1304557801, 1392422041, 1730882401, 1863895261, 2631883561, 2879450461, 3714274297, 3845297341, 4070454361, 4256780041, 4849695001, 5328809461, 5722533337, 5838483601, 7218898681, 7841065621
Offset: 1

Views

Author

Giorgio Balzarotti, May 07 2011

Keywords

Comments

This sequence is infinite, assuming Schinzel's Hypothesis H.
Related to Rassias Conjecture ("for any odd prime p there are primes q < r such that p*q = q + r + 1") setting p = q. Generalization can be achieved by removing semiprimality condition and accepting p^e, e >= 2.
These are semiprimes m = p*q such that 1/p + 1/q - 1/m = p/q. Cf. A326690. - Amiram Eldar and Thomas Ordowski, Jul 22 2019

Examples

			a(1) = 6 = 2*3 = 2*(2^2-2+1).
a(2) = 21 = 3*7 = 3*(3^2-3+1).
a(3) = 301 = 7*43 = 7*(7^2-7+1).
		

Crossrefs

Cf. A065508 (primes p such that p^2-p+1 is prime).
Cf. A001358 (semiprime), A003415 (arithmetic derivative), A164643, A190272 (n'=a-1), A190273 (n'=a+1), A190274 (n'=p^2-1).

Programs

  • Maple
    seq(`if`(isprime((ithprime(i)^2-ithprime(i)+1))=true,(ithprime(i)^2-ithprime(i)+1)*ithprime(i),NULL),i=1..300);
  • Mathematica
    p = Select[Prime@ Range@ 500, PrimeQ[#^2 - # + 1] &]; p (p^2 - p + 1) (* Giovanni Resta, Jul 22 2019 *)
  • PARI
    forprime(p=2,1e4,if(isprime(k=p^2-p+1),print1(p*k", "))) \\ Charles R Greathouse IV, May 08 2011

A175729 Numbers n such that the sum of the prime factors with multiplicity of n divides n-1.

Original entry on oeis.org

6, 21, 45, 52, 225, 301, 344, 441, 697, 1225, 1333, 1540, 1625, 1680, 1695, 1909, 2025, 2041, 2145, 2295, 2466, 2601, 2926, 3051, 3104, 3146, 3400, 3510, 3738, 3888, 3901, 4030, 4186, 4251, 4375, 4641, 4675, 4693, 4930, 5005, 5085, 5244, 5425, 6025, 6105
Offset: 1

Views

Author

K. T. Lee (7x3(AT)21cn.com), Aug 23 2010

Keywords

Examples

			For example, 21=7x3, 7+3=10 which divides 21-1=20.
		

Crossrefs

Disjoint from A130871 and A046346.
Cf. A001414.
Contains A164643.

Programs

  • Magma
    [k:k in [2..6200]| IsIntegral((k-1)/( &+[m[1]*m[2]: m in Factorization(k)]))]; // Marius A. Burtea, Sep 16 2019
    
  • Maple
    A001414 := proc(n) ifactors(n)[2] ; add( op(1,p)*op(2,p),p=%) ; end proc:
    isA175729 := proc(n) if (n-1) mod A001414(n) = 0 then true; else false; end if; end proc:
    for n from 2 to 10000 do if isA175729(n) then printf("%d,",n) ; end if; end do:
    # R. J. Mathar, Aug 24 2010
  • Mathematica
    fQ[n_] := Mod[n - 1, Plus @@ Flatten[ Table[ #1, {#2}] & @@@ FactorInteger@ n]] == 0; Select[ Range@ 6174, fQ] (* Robert G. Wilson v, Aug 25 2010 *)
  • Python
    from sympy import factorint
    def ok(n): return n>1 and (n-1)%sum(p*e for p, e in factorint(n).items())==0
    print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Sep 30 2022

Formula

{n : A001414(n) | (n-1)}. [R. J. Mathar, Aug 24 2010]

Extensions

Extended by R. J. Mathar and Robert G. Wilson v, Aug 24 2010

A340967 a(n) is the number of iterations of the map x -> n mod sopfr(x) starting with n to reach 0 or 1, where sopfr = A001414.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 4, 2, 1, 1, 2, 1, 2, 1, 4, 1, 3, 2, 4, 1, 3, 1, 1, 1, 2, 3, 3, 3, 2, 1, 4, 4, 3, 1, 3, 1, 4, 1, 3, 1, 2, 2, 2, 4, 1, 1, 5, 3, 2, 4, 4, 1, 1, 1, 4, 4, 2, 4, 2, 1, 4, 2, 1, 1, 1, 1, 3, 3, 3, 3, 3, 1, 2, 3, 3, 1, 1, 3, 4, 5, 2, 1, 3, 3, 3, 3, 5, 4, 2, 1, 2, 2
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 31 2021

Keywords

Comments

If n is prime, or n is in A164643, then a(n) = 1.

Examples

			a(12) = 3 because 12 mod (2+2+3) = 5, 12 mod 5 = 2 and 12 mod 2 = 0 (3 iterations).
a(54) = 5 because 54 mod (2+3+3+3) = 10, 54 mod (2+5) = 6, 54 mod 5 = 4, 54 mod (2+2) = 2, and 54 mod 2 = 0 (5 iterations).
		

Crossrefs

Programs

  • Maple
    sopfr:= proc(n) local t;
      add(t[1]*t[2], t = ifactors(n)[2])
    end proc:
    f:= proc(n) local x,k;
      x:= n;
      for k from 1 do x:= n mod sopfr(x); if x <= 1 then return k fi od;
    end proc:
    f(1):= 0:
    map(f, [$1..200]);
  • Python
    from sympy import factorint
    def A340967(n):
        c, x = 0, n
        while x > 1:
            c += 1
            x = n % sum(p*e for p, e in factorint(x).items())
        return c # Chai Wah Wu, Feb 01 2021

A164698 Semiprimes pq such that pq - 1 divides p^2 + q^2 + 2.

Original entry on oeis.org

6, 21, 26, 51, 1157, 372101, 1288005205276048901
Offset: 1

Views

Author

Mohamed Bouhamida, Aug 22 2009

Keywords

Comments

Semiprimes pq such that pq-1 divides (p+q)^2.
The third to fifth terms are Fib(3)*Fib(7), Fib(7)*Fib(11) and Fib(13)*Fib(17).
Products of two prime Fibonacci numbers F(k) and F(k+4) (see A001605 and A005478) are in the sequence.
6 and 26 are the only even terms. Odd terms contain products of pairs of consecutive terms from the following sequences: A005248, A001541, A033889, A033891. - Max Alekseyev, Aug 27 2009

Examples

			The semiprime 6 = 2*3 is in the sequence because 2*3 - 1 = 5 divides 2^2 + 3^2 + 2 = 15.
		

Crossrefs

Programs

  • Maple
    isA001358 := proc(n) RETURN ( numtheory[bigomega](n) =2 ) ; end:
    isA164698 := proc(n) if isA001358(n) then p := op(1,op(1,ifactors(n)[2]) ) ; q := n/p ; if (p^2+q^2+2) mod (p*q-1) = 0 then true; else false; fi; else false; fi; end:
    for n from 4 to 3000000 do if isA164698(n) then print(n, ifactors(n)) ; fi; od: # R. J. Mathar, Aug 24 2009

Extensions

Missing values added by R. J. Mathar, Aug 24 2009
a(7) from Max Alekseyev, Aug 27 2009
Showing 1-4 of 4 results.