cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A255245 Numbers that divide the average of the squares of their aliquot parts.

Original entry on oeis.org

10, 65, 140, 420, 2100, 2210, 20737, 32045, 200725, 207370, 1204350, 1347905, 1762645, 16502850, 31427800, 37741340, 107671200, 130643100, 200728169, 239719720, 357491225, 417225900, 430085380, 766750575, 1088692500, 1132409168, 1328204850, 1788379460
Offset: 1

Views

Author

Paolo P. Lava, Feb 20 2015

Keywords

Comments

Ratio: 1, 1, 5, 10, 78, 1, 109, 565,...
If the ratio is equal to 1 we have 10, 65, 20737 (A140362).

Examples

			Aliquot parts of 10 are 1, 2, 5. The average of their squares is (1^2 + 2^2 + 5^2) / 3 = (1 + 4 + 25) / 3 = 30 / 3 = 10 and 10 / 10 = 1.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,k,n;
    for n from 2 to q do a:=sort([op(divisors(n))]);
    b:=add(a[k]^2,k=1..nops(a)-1)/(nops(a)-1);
    if type(b/n,integer) then lprint(n);
    fi; od; end: P(10^6);
  • Mathematica
    Select[Range[10^6],Mod[Mean[Most[Divisors[#]^2]],#]==0&] (* Ivan N. Ianakiev, Mar 03 2015 *)
  • PARI
    isok(n) = (q=(sumdiv(n, d, (d!=n)*d^2)/(numdiv(n)-1))) && (type(q)=="t_INT") && ((q % n) == 0); \\ Michel Marcus, Feb 20 2015
    
  • Python
    from _future_ import division
    from sympy import factorint
    A255245_list = []
    for n in range(2,10**9):
        s0 = s2 = 1
        for p,e in factorint(n).items():
            s0 *= e+1
            s2 *= (p**(2*(e+1))-1)//(p**2-1)
        q, r = divmod(s2-n**2,s0-1)
        if not (r or q % n):
            A255245_list.append(n) # Chai Wah Wu, Mar 08 2015

Extensions

More terms from Michel Marcus, Feb 20 2015
a(17)-a(24) from Chai Wah Wu, Mar 08 2015
a(25)-a(28) from Giovanni Resta, May 30 2016

A164698 Semiprimes pq such that pq - 1 divides p^2 + q^2 + 2.

Original entry on oeis.org

6, 21, 26, 51, 1157, 372101, 1288005205276048901
Offset: 1

Views

Author

Mohamed Bouhamida, Aug 22 2009

Keywords

Comments

Semiprimes pq such that pq-1 divides (p+q)^2.
The third to fifth terms are Fib(3)*Fib(7), Fib(7)*Fib(11) and Fib(13)*Fib(17).
Products of two prime Fibonacci numbers F(k) and F(k+4) (see A001605 and A005478) are in the sequence.
6 and 26 are the only even terms. Odd terms contain products of pairs of consecutive terms from the following sequences: A005248, A001541, A033889, A033891. - Max Alekseyev, Aug 27 2009

Examples

			The semiprime 6 = 2*3 is in the sequence because 2*3 - 1 = 5 divides 2^2 + 3^2 + 2 = 15.
		

Crossrefs

Programs

  • Maple
    isA001358 := proc(n) RETURN ( numtheory[bigomega](n) =2 ) ; end:
    isA164698 := proc(n) if isA001358(n) then p := op(1,op(1,ifactors(n)[2]) ) ; q := n/p ; if (p^2+q^2+2) mod (p*q-1) = 0 then true; else false; fi; else false; fi; end:
    for n from 4 to 3000000 do if isA164698(n) then print(n, ifactors(n)) ; fi; od: # R. J. Mathar, Aug 24 2009

Extensions

Missing values added by R. J. Mathar, Aug 24 2009
a(7) from Max Alekseyev, Aug 27 2009

A350707 Numbers m such that all prime factors of m^2+1 are Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 8, 18, 34, 57, 144, 239, 322, 610, 1134903170
Offset: 1

Views

Author

Michel Lagneau, Mar 27 2022

Keywords

Comments

The Fibonacci numbers in the sequence include 1, 2, 3, 5, 8, 144, 610 and 1134903170.
The sequence includes terms of the form sqrt(f(n) - 1) and sqrt(5 * f(n) - 1), where f(n) = Fibonacci(A281087(n)) * Fibonacci(A281087(n)+2) = A140362(n). - Daniel Suteu, Mar 29 2022

Examples

			57 is in the sequence because 57^2+1 = 2*5^3*13 and 2, 5 and 13 are Fibonacci numbers;
1134903170 = Fibonacci(45) is in the sequence because 1134903170^2+1 = 433494437*2971215073 = Fibonacci(43)*Fibonacci(47).
		

Crossrefs

The sequence contains A281618 and A285282.

Programs

  • Maple
    with(numtheory):
    A005478:={2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497,1066340417491710595814572169, 19134702400093278081449423917}:
    for n from 0 to 11000 do:
       y:=factorset(n^2+1):n0:=nops(y):
       if A005478 intersect y = y
           then
           print(n):
           else
         fi:
    od:
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    isok(m) = my(f=factor(m^2+1)); for (i=1, #f~, if (!isfib(f[i,1]), return(0))); return(1); \\ Michel Marcus, Mar 29 2022
Showing 1-3 of 3 results.