A255245 Numbers that divide the average of the squares of their aliquot parts.
10, 65, 140, 420, 2100, 2210, 20737, 32045, 200725, 207370, 1204350, 1347905, 1762645, 16502850, 31427800, 37741340, 107671200, 130643100, 200728169, 239719720, 357491225, 417225900, 430085380, 766750575, 1088692500, 1132409168, 1328204850, 1788379460
Offset: 1
Keywords
Examples
Aliquot parts of 10 are 1, 2, 5. The average of their squares is (1^2 + 2^2 + 5^2) / 3 = (1 + 4 + 25) / 3 = 30 / 3 = 10 and 10 / 10 = 1.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..59 (terms < 10^11)
Programs
-
Maple
with(numtheory); P:=proc(q) local a,b,k,n; for n from 2 to q do a:=sort([op(divisors(n))]); b:=add(a[k]^2,k=1..nops(a)-1)/(nops(a)-1); if type(b/n,integer) then lprint(n); fi; od; end: P(10^6);
-
Mathematica
Select[Range[10^6],Mod[Mean[Most[Divisors[#]^2]],#]==0&] (* Ivan N. Ianakiev, Mar 03 2015 *)
-
PARI
isok(n) = (q=(sumdiv(n, d, (d!=n)*d^2)/(numdiv(n)-1))) && (type(q)=="t_INT") && ((q % n) == 0); \\ Michel Marcus, Feb 20 2015
-
Python
from _future_ import division from sympy import factorint A255245_list = [] for n in range(2,10**9): s0 = s2 = 1 for p,e in factorint(n).items(): s0 *= e+1 s2 *= (p**(2*(e+1))-1)//(p**2-1) q, r = divmod(s2-n**2,s0-1) if not (r or q % n): A255245_list.append(n) # Chai Wah Wu, Mar 08 2015
Extensions
More terms from Michel Marcus, Feb 20 2015
a(17)-a(24) from Chai Wah Wu, Mar 08 2015
a(25)-a(28) from Giovanni Resta, May 30 2016
Comments