A384515 Unitary s-Zumkeller numbers.
60, 140, 420, 660, 1224, 1820, 2660, 2820, 4620, 5460, 7140, 7980, 8580, 9660, 11220, 12180, 12540, 13020, 13260, 13580, 13860, 14140, 14420, 14820, 15180, 15540, 16380, 17220, 17940, 18060, 18200, 19140, 19380, 19740, 20020, 20460, 22260, 22620, 23460, 24180, 24420
Offset: 1
Keywords
Examples
The set of proper unitary divisors of 60 is A = {1,3,4,5,12,15,20}. The set of their squares is B= {1,9,16,25,144,225,400} and the sum of its elements is 820. B = {1,9,400} union {16,25,144,225}, which makes 60 a term of the present sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- David A. Corneth, PARI program.
- Jayanta Kalita and Helen K. Saikia, A Study On Generalized Zumkeller Numbers, INTEGERS, Volume 24 (2024), A95, pp. 7-10.
Programs
-
Mathematica
(* Naive code to illustrate the terms found by Kalita and Saikia *) uDiv[n_]:=Block[{d=Divisors[n]},Select[d,GCD[#,n/#]==1&]]; sigma2UDiv[n_]:=Total[uDiv[n]^2]; propUDiv[n_]:=uDiv[n]//Most; subsetsPropUDivQ[1]:=False; subsetsPropUDivQ[n_]:= Select[Subsets[propUDiv[n]],Total[Flatten[#]^2]==(sigma2UDiv[n]-n^2)/2&]!={}; Select[Range[1820],subsetsPropUDivQ[#]&] (* or *) q[n_] := Module[{d = Select[Divisors[n], # < n && CoprimeQ[#, n/#] &]^2, sum, x}, sum = Total[d]; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[2, 1000], q] (* Amiram Eldar, Jun 01 2025 *)
-
PARI
\\ See Corneth link
Extensions
a(7)-a(16) from Amiram Eldar, Jun 01 2025
More terms from David A. Corneth, Jun 01 2025
Comments