cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A255244 Numbers that divide the average of the sum of the squares of their divisors.

Original entry on oeis.org

1, 65, 175, 1105, 5425, 20737, 32045, 70525, 103685, 171275, 200725, 207553, 352529, 372775, 1037765, 1198925, 1264957, 1347905, 1762645, 1824877, 2609425, 2698189, 3628975, 3928475, 4966975, 6324785, 6337175, 8646625, 8813225, 9124385, 10223341, 12774139, 13490945
Offset: 1

Views

Author

Paolo P. Lava, Feb 20 2015

Keywords

Examples

			Divisors of 65 are 1, 5, 13, 65. The average of the sum of their squares is (1^2 + 5^2 + 13^2 + 65^2) / 4 = (1 + 25 + 169 + 4225) / 4 = 4420 / 4 = 1105 and 1105 / 65 = 17.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,k,n;
    for n from 2 to q do a:=divisors(n);
    b:=add(a[k]^2,k=1..nops(a))/nops(a);
    if type(b/n,integer) then lprint(n);
    fi; od; end: P(10^6);
  • Mathematica
    Select[Range[10^6],Mod[Mean[Divisors[#]^2],#]==0&] (* Ivan N. Ianakiev, Mar 03 2015 *)
  • PARI
    isok(n) = (q=sumdiv(n, d, d^2)/numdiv(n)) && (type(q)=="t_INT") && ((q % n) == 0); \\ Michel Marcus, Feb 20 2015
    
  • Python
    from _future_ import division
    from sympy import factorint
    A255244_list = []
    for n in range(1,10**9):
        s0 = s2 = 1
        for p,e in factorint(n).items():
            s0 *= e+1
            s2 *= (p**(2*(e+1))-1)//(p**2-1)
        q, r = divmod(s2,s0)
        if not (r or q % n):
            A255244_list.append(n) # Chai Wah Wu, Mar 08 2015

Extensions

More terms from Michel Marcus, Feb 20 2015
a(31)-a(33) corrected by Chai Wah Wu, Mar 08 2015
Showing 1-1 of 1 results.