A258692 Integers n such that n*(n + 2)*(n + 4) + 1 is a perfect square.
-4, -3, -2, 0, 1, 2, 8, 10, 18, 112, 1272
Offset: 1
Examples
1 * 3 * 5 + 1 = 16 = 4^2, so 4 is in the sequence. 2 * 4 * 6 + 1 = 49 = 7^2, so 2 is in the sequence. 3 * 5 * 7 + 1 = 106 = 2 * 53, so 3 is not in the sequence.
Crossrefs
Cf. A121234.
Programs
-
Magma
P
:= PolynomialRing(Integers()); {x: x in Sort([ p[1] : p in IntegralPoints(EllipticCurve(n^3 + 6*n^2 + 8*n + 1)) ])}; -
Mathematica
Select[Range[-10, 100], IntegerQ[Sqrt[#(# + 2)(# + 4) + 1]] &] (* Alonso del Arte, Jun 12 2015 *)
-
SageMath
[i[0] for i in EllipticCurve([0, 6, 0, 8, 1]).integral_points()] # Seiichi Manyama, Aug 26 2019
Comments