cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Morris Neene

Morris Neene's wiki page.

Morris Neene has authored 10 sequences.

A258928 a(n) = number of integral points on the elliptic curve y^2 = x^3 - (n^2)*x + 1, considering only nonnegative values of y.

Original entry on oeis.org

3, 6, 11, 9, 15, 13, 14, 17, 26, 12, 12, 11, 12, 19, 20, 11, 19, 36, 12, 17, 16, 11, 19, 16, 15, 27, 17, 17, 18, 16, 12, 15, 17, 11, 12, 11, 28, 16, 12, 11, 15, 24, 27, 11, 17, 12, 26, 15, 17, 15, 12, 15, 17, 27, 12, 14, 16, 15, 16, 24, 12, 41, 17, 16, 12, 11, 17, 16, 16, 15, 23, 15, 16, 20, 15
Offset: 0

Author

Morris Neene, Jun 14 2015

Keywords

Comments

For n>3, the number of integral points on y = x^3 - (n^2)*x + 1 is at least 11. These 11 points correspond to the solutions x = {-1, 0, n, -n, n + 2, -n + 2, n^2 - 1, n^2 - 2n + 2, n^2 + 2n + 2, n^4 + 2n, n^4 - 2n}.

Examples

			a(0) = 3 because the integer points on y^2 = x^3 + 1 are (-1, 0), (0, 1), and (2, 3).
		

Crossrefs

Programs

  • Sage
    def f(n):
      R. = QQ[]
      E = EllipticCurve(y^2 - x^3 + n^2*x - 1)
      return len(E.integral_points(both_signs=false))
    [f(x) for x in range(40)]  # Robert Israel, Apr 23 2021

Extensions

More terms from Robert Israel, Apr 23 2021

A259048 u(1) = v(1) = 1, u(n) = u(n-1) + v(n-1), v(n) = u(n-1)^2 + v(n-1)^2, a(n) = u(n).

Original entry on oeis.org

1, 2, 4, 12, 92, 6636, 42839036, 1834614576635532, 3365810487617338033584723922844, 11328680238554850474377984661704304183660014108982249765031212
Offset: 1

Author

Morris Neene, Jun 17 2015

Keywords

Examples

			u(2) = 2, v(2) = 2; u(3) = 4, v(3) = 8; u(4) = 12, v(4) = 80; u(5) = 92, v(5) = 6544.
		

Programs

  • Magma
    I:=[1,2]; [n le 2 select I[n] else Self(n-1)^2+Self(n-1)-2*Self(n-1)*Self(n-2)+2*Self(n-2)^2: n in [1..11]]; // Vincenzo Librandi, Jun 18 2015
    
  • Mathematica
    RecurrenceTable[{x[n+ 2] == x[n+1]^2 + x[n+1] - 2*x[n+1]*x[n] + 2*x[n]^2, x[1] == 1, x[2] == 2 }, x, {n, 10}]
  • PARI
    first(m)={my(u=vector(m),v=vector(m));v[1]=1;u[1]=1;for(i=2,m,u[i] = u[i-1] + v[i-1];v[i] = (u[i-1])^2 + (v[i-1])^2);u;} \\ Anders Hellström, Aug 20 2015
  • Sage
    def main(size):
        u=[1]; v=[1]; a=[1]
        for i in range(1,size-1):
            u.append(u[i-1]+v[i-1])
            v.append(u[i-1]**2+v[i-1]**2)
            a.append(u[i])
        return a # Anders Hellström, Jul 10 2015
    

Formula

a(n) = a(n-1)^2 + a(n-1) - 2*a(n-1)*a(n-2) + 2*a(n-2)^2, a(1) = 1, a(2) = 2.

A258967 a(1)=1, a(2)=2, a(3)=3, a(n) = ceiling(sqrt(a(n-1)*a(n-2)*a(n-3))), n>3.

Original entry on oeis.org

1, 2, 3, 3, 5, 7, 11, 20, 40, 94, 275, 1017, 5128, 37871, 444415, 9290130, 395420005, 40404949540, 12183091294648, 13951642918891149, 82872169787001239679, 3753148776564192982863648, 2083123034674803589767277778237, 25454214863632278822694894280883452911
Offset: 1

Author

Morris Neene, Jun 15 2015

Keywords

Examples

			a(4) = ceiling(sqrt(1*2*3)) = 3;
a(5) = ceiling(sqrt(2*3*3)) = 5;
a(6) = ceiling(sqrt(3*3*5)) = 7.
		

Crossrefs

Programs

  • Magma
    I:=[1, 2, 3]; [n le 3 select I[n] else Ceiling(Sqrt(Self(n-1)*Self(n-2)*Self(n-3))): n in [1..23]];
    
  • Mathematica
    RecurrenceTable[{a[n] == Ceiling[Sqrt[a[n - 1] a[n - 2] a[n - 3]]], a[1] == 1, a[2] == 2, a[3] == 3}, a, {n, 1, 23}] (* Michael De Vlieger, Jul 02 2015 *)
    a[1] = 1; a[2] = 2; a[3] = 3; a[n_] := a[n] = Ceiling[ Sqrt[ a[n - 1]*a[n - 2]*a[n - 3]]]; Array[a, 23] (* Robert G. Wilson v, Aug 12 2015 *)
    nxt[{a_,b_,c_}]:={b,c,Ceiling[Sqrt[a*b*c]]}; NestList[nxt,{1,2,3},30][[All,1]] (* Harvey P. Dale, Sep 09 2021 *)
  • PARI
    first(m)={my(v=vector(m));v[1]=1;v[2]=2;v[3]=3;for(i=4,m,v[i]=ceil(sqrt(v[i-1]*v[i-2]*v[i-3])));v;} \\ Anders Hellström, Aug 20 2015

Formula

a(n) is approximately k^(c^n), where c is the real root of x^3 - (x^2 + x + 1)/2 = 0 equal to (1 + (64 - 3*sqrt(417))^(1/3) + (64 + 3*sqrt(417))^(1/3))/6, and k is approximately 1.7450496...

Extensions

Corrected and extended by Harvey P. Dale, Sep 09 2021

A259191 Number of integral solutions to y^2 = x^3 + n*x^2 + n (with y nonnegative).

Original entry on oeis.org

3, 0, 0, 4, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 1, 8, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 6, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0
Offset: 1

Author

Morris Neene, Jun 20 2015

Keywords

Comments

If n is square there are at least two solutions, corresponding to x = 0 and x = -n. If n = 2^(2k) there are at least three solutions, corresponding to x = 0, x = -2^(2k), and x = 2^(6k-2) + 2^(2k). If n = 2k^2 + 2k, there is at least one solution, corresponding to x = 1.

Crossrefs

Programs

  • Sage
    for i in range(1,31):
        E=EllipticCurve([0,i,0,0,i])
        print(len(E.integral_points()))

A259189 Semiprimes of the form n^3 + 2.

Original entry on oeis.org

10, 218, 514, 731, 1333, 2199, 2746, 3377, 4915, 5834, 6861, 8002, 9263, 12169, 15627, 29793, 35939, 42877, 54874, 59321, 68923, 117651, 125002, 132653, 148879, 185195, 205381, 314434, 405226, 421877, 474554, 531443, 592706, 658505, 704971
Offset: 1

Author

Morris Neene, Jun 20 2015

Keywords

Comments

Intersection of A001358 and A084380. - Michel Marcus, Jun 20 2015
Since there are no squares of the form n^3 + 2, all semiprimes in this sequence are products of distinct primes.
No term in A040034 divides any term in this sequence.

Crossrefs

Cf. A001358 (semiprimes), A084380 (n^3+2), A144953 (primes of same form).
Cf. A237040 (similar sequence with n^3+1).

Programs

  • Magma
    IsSP:=func;[r:n in [1..1000]|IsSP(r) where r is 2+n^3];
    
  • Mathematica
    Select[Range[100]^3 + 2, PrimeOmega[#] == 2 &] (* Alonso del Arte, Jun 20 2015 *)
  • PARI
    is(n)=bigomega(n^3 + 2)==2 \\ Anders Hellström, Sep 07 2015
  • Perl
    use ntheory ":all"; my @sp = grep { scalar(factor($))==2 } map { $**3+2 } 1..100; say "@sp"; # Dana Jacobsen, Sep 07 2015
    

A258911 a(1)=a(2)=1, a(n) = ceiling(Pi*a(n-1) - a(n-2)), n>2.

Original entry on oeis.org

1, 1, 3, 9, 26, 73, 204, 568, 1581, 4399, 12239, 34051, 94736, 263571, 733297, 2040150, 5676024, 15791606, 43934770, 122233545, 340073237, 946138039, 2632307076, 7323498533, 20375142114, 56686898249, 157712000980
Offset: 1

Author

Morris Neene, Jun 14 2015

Keywords

Comments

Ratio of consecutive terms approaches (Pi + sqrt(Pi^2 - 4))/2, or approximately 2.782159649779516149316 (A189039).

Examples

			a(3) = ceiling(Pi*1 - 1) = 3;
a(4) = ceiling(Pi*3 - 1) = 9;
a(5) = ceiling(Pi*9 - 3) = 26.
		

Crossrefs

Cf. A189039.

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else Ceiling(pi*Self(n-1)-Self(n-2)): n in [1..200]];
    
  • Mathematica
    RecurrenceTable[{a[n] == Ceiling[Pi*a[n - 1] - a[n - 2]], a[1] == 1,
      a[2] == 1}, a, {n,1,50}] (* G. C. Greubel, Jun 03 2017 *)
    nxt[{a_,b_}]:={b,Ceiling[b*Pi-a]}; NestList[nxt,{1,1},30][[All,1]] (* Harvey P. Dale, Apr 02 2020 *)
  • PARI
    main(size)={my(v=vector(size),i);v[1]=1;v[2]=1;for(i=3,size,v[i]=ceil(Pi*v[i-1]-v[i-2]));return(v);} /* Anders Hellström, Jul 14 2015 */

A258948 a(1)=1, a(2)=2; for n>2, a(n) = (1/2)*a(n-1)*a(n-2) + a(n-1) + a(n-2).

Original entry on oeis.org

1, 2, 4, 10, 34, 214, 3886, 419902, 816293374, 171382426877950, 69949169911638289022974, 5994029248777394614754727872037912574, 209638685189029793998133268981457005889853767752082771673086
Offset: 1

Author

Morris Neene, Jun 15 2015

Keywords

Comments

a(n) + 2 = (1/2)*(a(n-1) + 2)*(a(n-2) + 2), from which the general formula can be proved using the method shown in A063896.

Examples

			a(3) = (1/2)*2*1 + 2 + 1 = 4;
a(4) = (1/2)*4*2 + 4 + 2 = 10;
a(5) = (1/2)*10*4 + 10 + 4 = 34;
a(6) = 2*(3^3)(2^2) - 2 = 214.
		

Crossrefs

Programs

  • Magma
    [n le 2 select n else Self(n-1)*Self(n-2)/2+Self(n-1)+Self(n-2): n in [1..13]];
    
  • Magma
    [2*3^Fibonacci(n-2)*2^Fibonacci(n-3)-2: n in [1..20]]; // Vincenzo Librandi, Jun 17 2015
  • Mathematica
    Table[2 3^Fibonacci[n-2] 2^Fibonacci[n-3] - 2, {n, 1, 20}] (* Vincenzo Librandi, Jun 17 2015 *)
  • PARI
    a(n) = 2*(3^fibonacci(n-2))*(2^fibonacci(n-3)) - 2; \\ Michel Marcus, Jun 17 2015
    

Formula

a(n) = 2 * 3^A000045(n-2) * 2^A000045(n-3) - 2, where A000045(n) is the n-th Fibonacci number.

A258875 a(1) = a(2) = a(3) = 1; for n > 3, a(n) = ceiling((a(n-1) + a(n-2) + a(n-3))/2).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 19, 23, 29, 36, 44, 55, 68, 84, 104, 128, 158, 195, 241, 297, 367, 453, 559, 690, 851, 1050, 1296, 1599, 1973, 2434, 3003, 3705, 4571, 5640, 6958, 8585, 10592, 13068, 16123, 19892, 24542, 30279
Offset: 1

Author

Morris Neene, Jun 13 2015

Keywords

Comments

First 14 terms are the same as A179241.
Ratio of consecutive terms approaches the real root of x^3 - (x^2 + x + 1)/2 = 0, whose approximate value is 1.2337519285, and whose exact value is (1 + (64 - 3*sqrt(417))^(1/3) + (64 + 3*sqrt(417))^(1/3))/6.
Same as A180235 for n > 5. - Georg Fischer, Oct 09 2018

Programs

  • Magma
    [n le 3 select 1 else Ceiling((Self(n-1)+Self(n-2)+ Self(n-3))/2): n in [1..60]]; // Vincenzo Librandi, Oct 10 2018
  • Maple
    a(4) = ceiling((1+1+1)/2) = 2;
    a(5) = ceiling((1+1+2)/2) = 2;
    a(6) = ceiling((1+2+2)/2) = 3.
  • Mathematica
    RecurrenceTable[{a[n] == Ceiling[(a[n - 1] + a[n - 2] + a[n - 3])/2], a[1] == a[2] == a[3] == 1}, a, {n, 1, 49}] (* Michael De Vlieger, Jun 20 2015 *)
    nxt[{a_,b_,c_}]:={b,c,Ceiling[(a+b+c)/2]}; NestList[nxt,{1,1,1},50][[All,1]] (* Harvey P. Dale, Feb 03 2022 *)
  • PARI
    lista(nn) = {va = vector(nn, n, if (n<=3, 1)); for (n=4, nn, va[n] = ceil((va[n-1]+va[n-2]+va[n-3])/2);); va;} \\ Michel Marcus, Jun 17 2015
    

A258898 a(1)=a(2)=1, a(n) = ceiling(e*a(n-1) - a(n-2)) for n>2.

Original entry on oeis.org

1, 1, 2, 5, 12, 28, 65, 149, 341, 778, 1774, 4045, 9222, 21023, 47925, 109251, 249051, 567740, 1294227, 2950334, 6725613, 15331778, 34950481, 79673480, 181624492, 414033077, 943834098, 2151574001, 4904750412, 11180919918
Offset: 1

Author

Morris Neene, Jun 14 2015

Keywords

Comments

Ratio of consecutive terms approaches A189040, (e + sqrt(e^2 - 4))/2.

Examples

			a(2) = ceiling(e*1 - 1) = 2;
a(3) = ceiling(e*2 - 1) = 5;
a(4) = ceiling(e*5 - 2) = 12;
a(5) = ceiling(e*12 - 5) = 28.
		

Crossrefs

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else Ceiling(Exp(1)*Self(n-1)-Self(n-2)): n in [1..200]];
  • Maple
    a:= proc(n) option remember; `if`(n<3, 1,
          ceil(exp(1)*a(n-1)-a(n-2)))
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 18 2015
  • Mathematica
    nxt[{a_,b_}]:={b,Ceiling[E*b-a]}; NestList[nxt,{1,1},30][[All,1]] (* Harvey P. Dale, Dec 02 2017 *)

A258692 Integers n such that n*(n + 2)*(n + 4) + 1 is a perfect square.

Original entry on oeis.org

-4, -3, -2, 0, 1, 2, 8, 10, 18, 112, 1272
Offset: 1

Author

Morris Neene, Jun 12 2015

Keywords

Comments

This sequence is finite as there are finitely many integer solutions to the elliptic curve y^2 = x(x + 2)(x + 4) + 1 = x^3 + 6x^2 + 8x + 1. The x values of the integer solutions are {-4, -3, -2, 0, 1, 2, 8, 10, 18, 112, 1272}. This equation has more integer and natural number solutions than the equation that defines sequence A121234.

Examples

			1 * 3 * 5 + 1 = 16 = 4^2, so 4 is in the sequence.
2 * 4 * 6 + 1 = 49 = 7^2, so 2 is in the sequence.
3 * 5 * 7 + 1 = 106 = 2 * 53, so 3 is not in the sequence.
		

Crossrefs

Cf. A121234.

Programs

  • Magma
    P := PolynomialRing(Integers()); {x: x in Sort([ p[1] : p in IntegralPoints(EllipticCurve(n^3 + 6*n^2 + 8*n + 1)) ])};
    
  • Mathematica
    Select[Range[-10, 100], IntegerQ[Sqrt[#(# + 2)(# + 4) + 1]] &] (* Alonso del Arte, Jun 12 2015 *)
  • SageMath
    [i[0] for i in EllipticCurve([0, 6, 0, 8, 1]).integral_points()] # Seiichi Manyama, Aug 26 2019