Jeremy Dover has authored 12 sequences. Here are the ten most recent ones:
A292999
Triangle read by rows: T(n,k) (n >= 1, 4 <= k <= n+3) is the number of k-sequences of balls colored with at most n colors such that exactly four balls are the same color as some other ball in the sequence.
Original entry on oeis.org
1, 8, 10, 21, 120, 90, 40, 420, 1440, 840, 65, 1000, 6300, 16800, 8400, 96, 1950, 18000, 88200, 201600, 90720, 133, 3360, 40950, 294000, 1234800, 2540160, 1058400, 176, 5320, 80640, 764400, 4704000, 17781120, 33868800, 13305600, 225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, 479001600, 179625600
Offset: 1
For n=1: AAAA -> T(1,4)=1.
For n=2: AAAA,BBBB,AABB,ABAB,ABBA,BAAB,BABA,BBAA -> T(2,4)=8; AAAAB,AAABA,AABAA,ABAAA,BAAAA,BBBBA,BBBAB,BBABB,BABBB,ABBBB -> T(2,5)=10.
Triangle starts:
1;
8, 10;
21, 120, 90;
40, 420, 1440, 840;
65, 1000, 6300, 16800, 8400;
96, 1950, 18000, 88200, 201600, 90720;
133, 3360, 40950, 294000, 1234800, 2540160, 1058400;
176, 5320, 80640, 764400, 4704000, 17781120, 33868800, 13305600;
225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, ... .
Diagonals of the table: T(n,n+3) =
A061206(n), T(n+1,n+3) = 8*
A005461(n), T(n-1,n) = 21*
A001755(n), T(n,n) = 40*
A001811(n), T(n,n-1) = 65*
A001777(n), T(n+6,n+4) =
A062194(n).
-
Table[Binomial[k, 4] n! (1/(n + 3 - k)! + 3/(n + 2 - k)!), {n, 9}, {k, 4, n + 3}] // Flatten (* Michael De Vlieger, Sep 30 2017 *)
A292998
Number of sequences of balls colored with at most n colors such that exactly three balls are the same color as some other ball in the sequence.
Original entry on oeis.org
1, 10, 87, 772, 7285, 74046, 812875, 9626632, 122643657, 1675253170, 24449818591, 379984902540, 6268557335677, 109443030279142, 2016658652491155, 39119860206021136, 797013832285599505, 17017679492994949722, 380045072079456330727
Offset: 1
For n=2 colors a, b, the a(n)=10 sequences of balls are: aaa, bbb, abbb, babb, bbab, bbba, baaa, abaa, aaba, aaab.
-
Table[n!*Sum[Binomial[k, 3]/(n + 2 - k)!, {k, 3, n + 2}], {n, 19}] (* Michael De Vlieger, Sep 28 2017 *)
-
a(n) = n! * sum(k=3, n+2, binomial(k,3)/(n+2-k)!); \\ Michel Marcus, Sep 29 2017
A292930
Triangle read by rows: T(n,k) (n>=1, 3<=k<=n+2) is the number of k-sequences of balls colored with at most n colors such that exactly three balls are the same color as some other ball in the sequence.
Original entry on oeis.org
1, 2, 8, 3, 24, 60, 4, 48, 240, 480, 5, 80, 600, 2400, 4200, 6, 120, 1200, 7200, 25200, 40320, 7, 168, 2100, 16800, 88200, 282240, 423360, 8, 224, 3360, 33600, 235200, 1128960, 3386880, 4838400, 9, 288, 5040, 60480, 529200, 3386880, 15240960, 43545600, 59875200, 10, 360, 7200, 100800, 1058400, 8467200, 50803200, 217728000, 598752000, 798336000
Offset: 1
n=1 => AAA -> T(1,3)=1;
n=2 => AAA,BBB -> T(2,3)=2;
AAAB,AABA,ABAA,BAAA,BBBA,BBAB,BABB,ABBB -> T(2,4)=8.
Triangle begins:
1;
2, 8;
3, 24, 60;
4, 48, 240, 480;
5, 80, 600, 2400, 4200;
...
Other sequences in table: T(n,n+2) =
A005990(n+1).
-
T(n, k) = binomial(k,3)*n!/(n+2-k)!;
tabl(nn) = for (n=1, nn, for (k=3, n+2, print1(T(n,k), ", ")); print()); \\ Michel Marcus, Sep 29 2017
A292880
Number of sequences of balls colored with at most n colors such that exactly three balls are of a color seen earlier in the sequence.
Original entry on oeis.org
1, 32, 633, 10744, 173705, 2798376, 45930577, 777101648, 13638044529, 249079033360, 4741200949001, 94104123729672, 1947270419971513, 41985753920469464, 942531024150018465, 22009425078894009376, 534085741053864862817, 13454221423402868473728, 351483652960252663137049, 9512821482149972773978520
Offset: 1
A292879
Triangle read by rows: T(n,k) (n>=1, 4<=k<=n+3) is the number of k-sequences of balls colored with at most n colors such that exactly three balls are of a color seen previously in the sequence.
Original entry on oeis.org
1, 2, 30, 3, 90, 540, 4, 180, 2160, 8400, 5, 300, 5400, 42000, 126000, 6, 450, 10800, 126000, 756000, 1905120, 7, 630, 18900, 294000, 2646000, 13335840, 29635200, 8, 840, 30240, 588000, 7056000, 53343360, 237081600, 479001600, 9, 1080, 45360, 1058400, 15876000, 160030080, 1066867200, 4311014400, 8083152000
Offset: 1
n=1 => AAAA -> T(1,4)=1
n=2 => AAAA,BBBB -> T(2,4)=2
AAAAB,AAABA,AABAA,ABAAA,BAAAA,BBBBA,BBBAB,BBABB,BABBB,ABBBB,
AAABB,AABAB,AABBA,ABAAB,ABABA,ABBAA,BAAAB,BAABA,BABAA,BBAAA,
BBBAA,BBABA,BBAAB,BABBA,BABAB,BAABB,ABBBA,ABBAB,ABABB,AABBB -> T(2,5)=30
Triangle begins:
1;
2, 30;
3, 90, 540;
4, 180, 2160, 8400;
5, 300, 5400, 42000, 126000;
6, 450, 10800, 126000, 756000, 1905120;
7, 630, 18900, 294000, 2646000, 13335840, 29635200;
8, 840, 30240, 588000, 7056000, 53343360, 237081600, 479001600;
...
A292878
Number of ascending ballistic random walks of length n in 3-dimensions.
Original entry on oeis.org
1, 5, 21, 81, 313, 1213, 4701, 18217, 70593, 273557, 1060069, 4107905, 15918665, 61686893, 239044717, 926329305, 3589646289, 13910345285, 53904393461, 208886521137, 809462381657, 3136771792413, 12155397830269, 47103744291977, 182533122922465, 707339543058421, 2741032537895173, 10621856854367201
Offset: 0
One can think of the Us as separators. Each substring between the Us (plus those before the first U and after the last U) can only contain one of L or R, and one of F or B.
Sample of a good walk: LBLL U LFFFF U U BBBRBR U FR
Sample of a bad walk: LBR U FFFRF U LBLL U FB
^ ^ ^^
A281944
Triangle read by rows: T(n,k) (n>=1, 3<=k<=n+2) is the number of k-sequences of balls colored with n colors such that exactly two balls are of a color seen previously in the sequence.
Original entry on oeis.org
1, 2, 14, 3, 42, 150, 4, 84, 600, 1560, 5, 140, 1500, 7800, 16800, 6, 210, 3000, 23400, 100800, 191520, 7, 294, 5250, 54600, 352800, 1340640, 2328480, 8, 392, 8400, 109200, 940800, 5362560, 18627840, 30240000, 9, 504, 12600, 196560, 2116800, 16087680, 83825280, 272160000, 419126400, 10, 630, 18000, 327600, 4233600, 40219200, 279417600, 1360800000, 4191264000, 6187104000
Offset: 1
n=1 => AAA -> T(1,3)=1
n=2 => AAA,BBB -> T(2,3)=2
AAAB,AABA,ABAA,BAAA,BBBA,BBAB,BABB,ABBB,AABB,ABAB,ABBA,BAAB,BABA,BBAA -> T(2,4)=14
Triangle starts:
1
2, 14
3, 42, 150
4, 84, 600, 1560
5, 140, 1500, 7800, 16800
6, 210, 3000, 23400, 100800, 191520
7, 294, 5250, 54600, 352800, 1340640, 2328480
8, 392, 8400, 109200, 940800, 5362560, 18627840, 30240000
9, 504, 12600, 196560, 2116800, 16087680, 83825280, 272160000, 419126400
Other sequences in table: T(n,n+2) =
A037960(n).
-
Table[(Binomial[k, 3] + 3 Binomial[k, 4]) n!/(n + 2 - k)!, {n, 12}, {k, 3, n + 2}] // Flatten (* Michael De Vlieger, Feb 05 2017 *)
-
T(n, k) = (binomial(k,3) + 3*binomial(k,4)) * n! / (n+2-k)!;
tabl(nn) = for (n=1, nn, for (k=3, n+2, print1(T(n,k), ", ")); print()); \\ Michel Marcus, Feb 04 2017
A281946
Number of sequences of balls colored with at most n colors such that exactly two balls are of a color seen earlier in the sequence.
Original entry on oeis.org
1, 16, 195, 2248, 26245, 318936, 4082071, 55289200, 793525833, 12063384640, 194002619371, 3294811981176, 58980720557005, 1110692723476168, 21960340413007935, 455018383693865056, 9862401602086024081, 223233406292824965360, 5268151612376938762003, 129425572759622914323880
Offset: 1
-
Table[n! * Sum[(Binomial[k,3]+3*Binomial[k,4])/(n+2-k)!, {k, 3, n+2}], {n, 1, 20}] (* Vaclav Kotesovec, Feb 03 2017 *)
A281881
Triangle read by rows: T(n,k) (n>=1, 2<=k<=n+1) is the number of k-sequences of balls colored with at most n colors such that exactly one ball is of a color seen previously in the sequence.
Original entry on oeis.org
1, 2, 6, 3, 18, 36, 4, 36, 144, 240, 5, 60, 360, 1200, 1800, 6, 90, 720, 3600, 10800, 15120, 7, 126, 1260, 8400, 37800, 105840, 141120, 8, 168, 2016, 16800, 100800, 423360, 1128960, 1451520
Offset: 1
n=1 => AA -> T(1,2) = 1.
n=2 => AA, BB -> T(2,2) = 2; AAB, ABA, BAA, BBA, BAB, ABB -> T(2,3) = 6.
Triangle starts:
1
2, 6
3, 18, 36
4, 36, 144, 240
5, 60, 360, 1200, 1800
6, 90, 720, 3600, 10800, 15120
7, 126, 1260, 8400, 37800, 105840, 141120
8, 168, 2016, 16800, 100800, 423360, 1128960, 1451520
9, 216, 3024, 30240, 226800, 1270080, 5080320, 13063680, 16329600
10, 270, 4320, 50400, 453600, 3175200, 16934400, 65318400, 163296000, 199584000
Columns of table:
Other sequences in table:
-
Table[Binomial[k, 2] n!/(n + 1 - k)!, {n, 8}, {k, 2, n + 1}] // Flatten (* Michael De Vlieger, Feb 02 2017 *)
A281912
Number of sequences of balls colored with at most n colors such that exactly one ball is of a color seen earlier in the sequence.
Original entry on oeis.org
1, 8, 57, 424, 3425, 30336, 294553, 3123632, 36003969, 448816600, 6022033721, 86587079448, 1328753602657, 21683227579664, 375013198304025, 6853321766162656, 131976208783240193, 2671430511854158632, 56709161712552286009, 1259836187316759240200
Offset: 1
n=1 => AA -> a(1) = 1.
n=2 => AA,BB,AAB,ABA,BAA,BBA,BAB,ABB -> a(2) = 8.
-
a:= proc(n) option remember;
`if`(n<2, 1, a(n-1)*(n+2)/(n-1)-a(n-2))*n
end:
seq(a(n), n=1..25); # Alois P. Heinz, Feb 02 2017
-
Table[n!*Sum[Binomial[k, 2]/(n + 1 - k)!, {k, 2, n + 1}], {n, 20}] (* Michael De Vlieger, Feb 02 2017 *)
Comments