cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jeremy Dover

Jeremy Dover's wiki page.

Jeremy Dover has authored 12 sequences. Here are the ten most recent ones:

A292999 Triangle read by rows: T(n,k) (n >= 1, 4 <= k <= n+3) is the number of k-sequences of balls colored with at most n colors such that exactly four balls are the same color as some other ball in the sequence.

Original entry on oeis.org

1, 8, 10, 21, 120, 90, 40, 420, 1440, 840, 65, 1000, 6300, 16800, 8400, 96, 1950, 18000, 88200, 201600, 90720, 133, 3360, 40950, 294000, 1234800, 2540160, 1058400, 176, 5320, 80640, 764400, 4704000, 17781120, 33868800, 13305600, 225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, 479001600, 179625600
Offset: 1

Author

Jeremy Dover, Sep 27 2017

Keywords

Examples

			For n=1: AAAA -> T(1,4)=1.
For n=2: AAAA,BBBB,AABB,ABAB,ABBA,BAAB,BABA,BBAA -> T(2,4)=8; AAAAB,AAABA,AABAA,ABAAA,BAAAA,BBBBA,BBBAB,BBABB,BABBB,ABBBB -> T(2,5)=10.
Triangle starts:
    1;
    8,   10;
   21,  120,     90;
   40,  420,   1440,     840;
   65, 1000,   6300,   16800,     8400;
   96, 1950,  18000,   88200,   201600,    90720;
  133, 3360,  40950,  294000,  1234800,  2540160,   1058400;
  176, 5320,  80640,  764400,  4704000, 17781120,  33868800, 13305600;
  225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, ... .
		

Crossrefs

Columns of the table: T(n,4) = A000567(n), T(n,5) = 10*A007586(n-1), T(n,6) = 90*A220212(n-2).
Diagonals of the table: T(n,n+3) = A061206(n), T(n+1,n+3) = 8*A005461(n), T(n-1,n) = 21*A001755(n), T(n,n) = 40*A001811(n), T(n,n-1) = 65*A001777(n), T(n+6,n+4) = A062194(n).

Programs

  • Mathematica
    Table[Binomial[k, 4] n! (1/(n + 3 - k)! + 3/(n + 2 - k)!), {n, 9}, {k, 4, n + 3}] // Flatten (* Michael De Vlieger, Sep 30 2017 *)

Formula

a(n) = binomial(k,4)*n!*(1/(n+3-k)! + 3/(n+2-k)!) (with the convention that 3/(-1)! = 0 when k=n+3).

A292998 Number of sequences of balls colored with at most n colors such that exactly three balls are the same color as some other ball in the sequence.

Original entry on oeis.org

1, 10, 87, 772, 7285, 74046, 812875, 9626632, 122643657, 1675253170, 24449818591, 379984902540, 6268557335677, 109443030279142, 2016658652491155, 39119860206021136, 797013832285599505, 17017679492994949722, 380045072079456330727
Offset: 1

Author

Jeremy Dover, Sep 27 2017

Keywords

Comments

Note that any such sequence has at least 3 balls and at most n+2, and that three matching balls must all be the same color.

Examples

			For n=2 colors a, b, the a(n)=10 sequences of balls are: aaa, bbb, abbb, babb, bbab, bbba, baaa, abaa, aaba, aaab.
		

Crossrefs

Row sums of triangle A292930.

Programs

  • Mathematica
    Table[n!*Sum[Binomial[k, 3]/(n + 2 - k)!, {k, 3, n + 2}], {n, 19}] (* Michael De Vlieger, Sep 28 2017 *)
  • PARI
    a(n) = n! * sum(k=3, n+2, binomial(k,3)/(n+2-k)!); \\ Michel Marcus, Sep 29 2017

Formula

a(n) = n! * Sum_{k=3..n+2} binomial(k,3)/(n+2-k)!.

A292930 Triangle read by rows: T(n,k) (n>=1, 3<=k<=n+2) is the number of k-sequences of balls colored with at most n colors such that exactly three balls are the same color as some other ball in the sequence.

Original entry on oeis.org

1, 2, 8, 3, 24, 60, 4, 48, 240, 480, 5, 80, 600, 2400, 4200, 6, 120, 1200, 7200, 25200, 40320, 7, 168, 2100, 16800, 88200, 282240, 423360, 8, 224, 3360, 33600, 235200, 1128960, 3386880, 4838400, 9, 288, 5040, 60480, 529200, 3386880, 15240960, 43545600, 59875200, 10, 360, 7200, 100800, 1058400, 8467200, 50803200, 217728000, 598752000, 798336000
Offset: 1

Author

Jeremy Dover, Sep 26 2017

Keywords

Comments

Note that the three matching balls are necessarily the same color.

Examples

			n=1 => AAA -> T(1,3)=1;
n=2 => AAA,BBB -> T(2,3)=2;
       AAAB,AABA,ABAA,BAAA,BBBA,BBAB,BABB,ABBB -> T(2,4)=8.
Triangle begins:
  1;
  2, 8;
  3, 24, 60;
  4, 48, 240, 480;
  5, 80, 600, 2400, 4200;
  ...
		

Crossrefs

Columns of table: T(n,3) = A000027(n), T(n,4) = A033996(n).
Other sequences in table: T(n,n+2) = A005990(n+1).

Programs

  • PARI
    T(n, k) = binomial(k,3)*n!/(n+2-k)!;
    tabl(nn) = for (n=1, nn, for (k=3, n+2, print1(T(n,k), ", ")); print()); \\ Michel Marcus, Sep 29 2017

Formula

T(n, k) = binomial(k,3)*n!/(n+2-k)!.

A292880 Number of sequences of balls colored with at most n colors such that exactly three balls are of a color seen earlier in the sequence.

Original entry on oeis.org

1, 32, 633, 10744, 173705, 2798376, 45930577, 777101648, 13638044529, 249079033360, 4741200949001, 94104123729672, 1947270419971513, 41985753920469464, 942531024150018465, 22009425078894009376, 534085741053864862817, 13454221423402868473728, 351483652960252663137049, 9512821482149972773978520
Offset: 1

Author

Jeremy Dover, Sep 25 2017

Keywords

Comments

Note that any such sequence has at least 4 balls and at most n+3.

Crossrefs

Row sums of triangle A292879.

Formula

a(n) = n! * Sum_{k=4..n+3} [binomial(k,4)+10*binomial(k,5)+15*binomial(k,6)]/(n+3-k)!

A292879 Triangle read by rows: T(n,k) (n>=1, 4<=k<=n+3) is the number of k-sequences of balls colored with at most n colors such that exactly three balls are of a color seen previously in the sequence.

Original entry on oeis.org

1, 2, 30, 3, 90, 540, 4, 180, 2160, 8400, 5, 300, 5400, 42000, 126000, 6, 450, 10800, 126000, 756000, 1905120, 7, 630, 18900, 294000, 2646000, 13335840, 29635200, 8, 840, 30240, 588000, 7056000, 53343360, 237081600, 479001600, 9, 1080, 45360, 1058400, 15876000, 160030080, 1066867200, 4311014400, 8083152000
Offset: 1

Author

Jeremy Dover, Sep 25 2017

Keywords

Examples

			  n=1 => AAAA -> T(1,4)=1
  n=2 => AAAA,BBBB -> T(2,4)=2
         AAAAB,AAABA,AABAA,ABAAA,BAAAA,BBBBA,BBBAB,BBABB,BABBB,ABBBB,
         AAABB,AABAB,AABBA,ABAAB,ABABA,ABBAA,BAAAB,BAABA,BABAA,BBAAA,
         BBBAA,BBABA,BBAAB,BABBA,BABAB,BAABB,ABBBA,ABBAB,ABABB,AABBB -> T(2,5)=30
Triangle begins:
1;
2,   30;
3,   90,   540;
4,  180,  2160,    8400;
5,  300,  5400,   42000,   126000;
6,  450, 10800,  126000,   756000,   1905120;
7,  630, 18900,  294000,  2646000,  13335840,   29635200;
8,  840, 30240,  588000,  7056000,  53343360,  237081600,  479001600;
...
		

Crossrefs

Main diagonal is A037961.

Formula

[binomial(k,4)+10*binomial(k,5)+15*binomial(k,6)]*n!/(n+3-k)!

A292878 Number of ascending ballistic random walks of length n in 3-dimensions.

Original entry on oeis.org

1, 5, 21, 81, 313, 1213, 4701, 18217, 70593, 273557, 1060069, 4107905, 15918665, 61686893, 239044717, 926329305, 3589646289, 13910345285, 53904393461, 208886521137, 809462381657, 3136771792413, 12155397830269, 47103744291977, 182533122922465, 707339543058421, 2741032537895173, 10621856854367201
Offset: 0

Author

Jeremy Dover, Sep 25 2017

Keywords

Comments

A walk begins at the origin, and each step can be in one of five directions: Up (0,0,1), Left (-1,0,0), Right (1,0,0), Forward (0,-1,0) or Backward (0,1,0), satisfying the condition that within each plane z=k, the path may only move away from the first step into that plane. This concept generalizes the "Number of n step one-sided prudent walks with east, west and north steps" of A001333.
Number of length n strings of the symbols U, L, R, F and B such that between any L and R (resp. F and B) there appears at least one U.

Examples

			One can think of the Us as separators. Each substring between the Us (plus those before the first U and after the last U) can only contain one of L or R, and one of F or B.
Sample of a good walk: LBLL U LFFFF U U BBBRBR U FR
Sample of a bad walk: LBR U FFFRF U LBLL U FB
                      ^ ^                  ^^
		

Crossrefs

Cf. A001333.

Programs

  • Mathematica
    LinearRecurrence[{4, -1, 2}, {1, 5, 21}, 40] (* Jean-François Alcover, Sep 29 2019 *)
  • PARI
    Vec((1 + x + 2*x^2)/(1 - 4*x + x^2 - 2*x^3) + O(x^40)) \\ Andrew Howroyd, Feb 17 2018

Formula

a(n) = a(n-1) + 4(2^n-1) + 4 Sum_{k=2..n} (2^(k-1)-1)*a(n-k) for n > 0.
From Jay Pantone, Sep 24 2017: (Start)
a(n) = 4a(n-1) - a(n-2) + 2a(n-3).
G.f.: (1 + x + 2x^2) / (1 - 4x + x^2 - 2x^3).
(End)

A281944 Triangle read by rows: T(n,k) (n>=1, 3<=k<=n+2) is the number of k-sequences of balls colored with n colors such that exactly two balls are of a color seen previously in the sequence.

Original entry on oeis.org

1, 2, 14, 3, 42, 150, 4, 84, 600, 1560, 5, 140, 1500, 7800, 16800, 6, 210, 3000, 23400, 100800, 191520, 7, 294, 5250, 54600, 352800, 1340640, 2328480, 8, 392, 8400, 109200, 940800, 5362560, 18627840, 30240000, 9, 504, 12600, 196560, 2116800, 16087680, 83825280, 272160000, 419126400, 10, 630, 18000, 327600, 4233600, 40219200, 279417600, 1360800000, 4191264000, 6187104000
Offset: 1

Author

Jeremy Dover, Feb 02 2017

Keywords

Examples

			n=1 => AAA -> T(1,3)=1
n=2 => AAA,BBB -> T(2,3)=2
   AAAB,AABA,ABAA,BAAA,BBBA,BBAB,BABB,ABBB,AABB,ABAB,ABBA,BAAB,BABA,BBAA -> T(2,4)=14
Triangle starts:
   1
   2,  14
   3,  42,   150
   4,  84,   600,   1560
   5, 140,  1500,   7800,   16800
   6, 210,  3000,  23400,  100800,   191520
   7, 294,  5250,  54600,  352800,  1340640,  2328480
   8, 392,  8400, 109200,  940800,  5362560, 18627840,  30240000
   9, 504, 12600, 196560, 2116800, 16087680, 83825280, 272160000, 419126400
		

Crossrefs

Columns of table: T(n,3) = A000027(n), T(n,4) = A163756(n).
Other sequences in table: T(n,n+2) = A037960(n).

Programs

  • Mathematica
    Table[(Binomial[k, 3] + 3 Binomial[k, 4]) n!/(n + 2 - k)!, {n, 12}, {k, 3, n + 2}] // Flatten (* Michael De Vlieger, Feb 05 2017 *)
  • PARI
    T(n, k) = (binomial(k,3) + 3*binomial(k,4)) * n! / (n+2-k)!;
    tabl(nn) = for (n=1, nn, for (k=3, n+2, print1(T(n,k), ", ")); print()); \\ Michel Marcus, Feb 04 2017

Formula

T(n, k) = (binomial(k,3) + 3*binomial(k,4)) * n! / (n+2-k)!.
T(n, k) = n*T(n-1,k-1) + (k-2)*A281881(n,k-1).

A281946 Number of sequences of balls colored with at most n colors such that exactly two balls are of a color seen earlier in the sequence.

Original entry on oeis.org

1, 16, 195, 2248, 26245, 318936, 4082071, 55289200, 793525833, 12063384640, 194002619371, 3294811981176, 58980720557005, 1110692723476168, 21960340413007935, 455018383693865056, 9862401602086024081, 223233406292824965360, 5268151612376938762003, 129425572759622914323880
Offset: 1

Author

Jeremy Dover, Feb 02 2017

Keywords

Comments

Note that any such sequence has at least 3 balls and at most n+2.

Crossrefs

Row sums of triangle A281944.

Programs

  • Mathematica
    Table[n! * Sum[(Binomial[k,3]+3*Binomial[k,4])/(n+2-k)!, {k, 3, n+2}], {n, 1, 20}] (* Vaclav Kotesovec, Feb 03 2017 *)

Formula

a(n) = n! * Sum_{k=3..n+2} (binomial(k,3)+3*binomial(k,4))/(n+2-k)!.
a(n)/n! ~ e*n^4/8. - Vaclav Kotesovec, Feb 03 2017

A281881 Triangle read by rows: T(n,k) (n>=1, 2<=k<=n+1) is the number of k-sequences of balls colored with at most n colors such that exactly one ball is of a color seen previously in the sequence.

Original entry on oeis.org

1, 2, 6, 3, 18, 36, 4, 36, 144, 240, 5, 60, 360, 1200, 1800, 6, 90, 720, 3600, 10800, 15120, 7, 126, 1260, 8400, 37800, 105840, 141120, 8, 168, 2016, 16800, 100800, 423360, 1128960, 1451520
Offset: 1

Author

Jeremy Dover, Feb 01 2017

Keywords

Comments

Number of k-sequences of balls colored with at most n colors such that exactly two balls are the same color as some other ball in the sequence (necessarily each other). - Jeremy Dover, Sep 26 2017

Examples

			n=1 => AA -> T(1,2) = 1.
n=2 => AA, BB -> T(2,2) = 2; AAB, ABA, BAA, BBA, BAB, ABB -> T(2,3) = 6.
Triangle starts:
   1
   2,   6
   3,  18,   36
   4,  36,  144,   240
   5,  60,  360,  1200,   1800
   6,  90,  720,  3600,  10800,   15120
   7, 126, 1260,  8400,  37800,  105840,   141120
   8, 168, 2016, 16800, 100800,  423360,  1128960,  1451520
   9, 216, 3024, 30240, 226800, 1270080,  5080320, 13063680,  16329600
  10, 270, 4320, 50400, 453600, 3175200, 16934400, 65318400, 163296000, 199584000
		

Crossrefs

Columns of table:
T(n,2) = A000027(n)
T(n,3) = A028896(n)
Other sequences in table:
T(n,n+1) = A001286(n)
T(n,n) = A001804(n), n>=2

Programs

  • Mathematica
    Table[Binomial[k, 2] n!/(n + 1 - k)!, {n, 8}, {k, 2, n + 1}] // Flatten (* Michael De Vlieger, Feb 02 2017 *)

Formula

T(n,k) = binomial(k,2)*n!/(n+1-k)!.
T(n,k) = n*T(n-1,k-1) + (k-1)*n!/(n+1-k)!.

A281912 Number of sequences of balls colored with at most n colors such that exactly one ball is of a color seen earlier in the sequence.

Original entry on oeis.org

1, 8, 57, 424, 3425, 30336, 294553, 3123632, 36003969, 448816600, 6022033721, 86587079448, 1328753602657, 21683227579664, 375013198304025, 6853321766162656, 131976208783240193, 2671430511854158632, 56709161712552286009, 1259836187316759240200
Offset: 1

Author

Jeremy Dover, Feb 01 2017

Keywords

Comments

Note that any such sequence has at least 2 balls, and at most n+1
Number of sequences of balls colored with at most n colors such that exactly two balls are the same color as some other ball in the sequence (necessarily each other). - Jeremy Dover, Sep 26 2017

Examples

			n=1 => AA -> a(1) = 1.
n=2 => AA,BB,AAB,ABA,BAA,BBA,BAB,ABB -> a(2) = 8.
		

Crossrefs

Cf. A093964.
Row sums of triangle A281881. - Jeremy Dover, Sep 26 2017

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<2, 1, a(n-1)*(n+2)/(n-1)-a(n-2))*n
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Feb 02 2017
  • Mathematica
    Table[n!*Sum[Binomial[k, 2]/(n + 1 - k)!, {k, 2, n + 1}], {n, 20}] (* Michael De Vlieger, Feb 02 2017 *)

Formula

a(n) = n! * Sum_{k=2..n+1} binomial(k,2)/(n+1-k)!.
a(n) = n if n < 2, a(n) = n*((n+2)/(n-1)*a(n-1) - a(n-2)) for n >= 2. - Alois P. Heinz, Feb 02 2017
a(n)/n! ~ e*n^2/2. - Vaclav Kotesovec, Feb 03 2017