cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jaume Oliver Lafont

Jaume Oliver Lafont's wiki page.

Jaume Oliver Lafont has authored 60 sequences. Here are the ten most recent ones:

A157718 Greedy Egyptian fraction expansion of log(3).

Original entry on oeis.org

1, 11, 130, 91827, 42593758221, 2068726045016880942060, 20697114911379630588051784011292634933847536, 832769470129253476302780470023395858447487389073547955500158020204885523374048803963217
Offset: 0

Author

Jaume Oliver Lafont, Mar 04 2009

Keywords

Examples

			log(3) = Sum_{n>=0} 1/a(n) = 1/1 + 1/11 + 1/130 + 1/91827 + 1/42593758221 + ...
		

Crossrefs

Programs

  • PARI
    x=log(3); for (k=1, 8, d=ceil(1/x); x=x-1/d; print(d,","))

A158366 Least k such that n! divides (n+k)!/(n+1)!.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 40, 43, 44, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 64, 67, 68, 69, 70, 71, 72
Offset: 1

Author

Jaume Oliver Lafont, Mar 17 2009

Keywords

Comments

Motivated by 6!=10!/7!.
It appears that for most n, a(n) = n. The sequence of n for which a(n) != n begins: 6, 28, 42, 45, 66, 77, 91, 110, 126 ... that is probably A120624. - Michel Marcus, Aug 21 2013

Crossrefs

Cf. A000142.

Programs

  • PARI
    for (n=1,100,k=1;while((n+k)!/(n+1)!%n!,k++);print1(k,","))

A166741 E.g.f.: exp(2*arcsin(x)).

Original entry on oeis.org

1, 2, 4, 10, 32, 130, 640, 3770, 25600, 199810, 1740800, 16983850, 181043200, 2122981250, 26794393600, 367275756250, 5358878720000, 84106148181250, 1393308467200000, 24643101417106250, 457005177241600000
Offset: 0

Author

Jaume Oliver Lafont, Oct 21 2009

Keywords

Comments

exp(2*arcsin(1)) is Aleksandr Gelfond's constant.

Crossrefs

Programs

  • Maple
    seq(simplify(2^(n-1) * (cosh(Pi)*(1-(-1)^n) + sinh(Pi)*(1+(-1)^n)) * GAMMA((1/2)*n-I)*GAMMA((1/2)*n+I) / Pi), n=0..20); # Vaclav Kotesovec, Nov 06 2014
  • Mathematica
    CoefficientList[Series[E^(2*ArcSin[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
    FullSimplify[Table[2^(n-1) * (E^(Pi)-(-1)^n*E^(-Pi)) * Gamma[n/2-I] * Gamma[n/2+I] / Pi,{n,0,20}]] (* Vaclav Kotesovec, Nov 06 2014 *)
  • PARI
    for (n=0,25,print(polcoeff(exp(2*asin(x)),n)*n!,","))

Formula

a(n) ~ 2 * n^(n-1) * (exp(Pi) - (-1)^n/exp(Pi)) / exp(n). - Vaclav Kotesovec, Aug 04 2014
From Vaclav Kotesovec, Nov 06 2014: (Start)
a(n) = (n^2 - 4*n + 8)*a(n-2).
a(n) = 2^(n-1) * (exp(Pi)-(-1)^n*exp(-Pi)) * GAMMA(n/2-I) * GAMMA(n/2+I) / Pi.
(End)

A157625 Product of the composite numbers between n+1 and 2n, both inclusive.

Original entry on oeis.org

1, 4, 24, 48, 4320, 8640, 120960, 3628800, 7257600, 14515200, 6706022400, 13412044800, 8717829120000, 470762772480000, 941525544960000, 1883051089920000, 2112783322890240000, 147894832602316800000
Offset: 1

Author

Jaume Oliver Lafont, Mar 03 2009

Keywords

Comments

This function is very useful in a problem due to Paul Erdős recorded in A157017. - M. F. Hasler, Feb 26 2014

Crossrefs

Cf. A073840, A157017, A144186 (product of primes between n+2 and 2n, both inclusive).

Programs

  • Mathematica
    nn=20;With[{comps=Complement[Range[2nn],Prime[Range[PrimePi[2nn]]]]}, Table[ Times@@ Select[comps,#>n&&#<=2n&],{n,nn}]] (* Harvey P. Dale, Feb 18 2013 *)
  • PARI
    a(n)=prod(i=n+1,2*n,if(isprime(i),1,i))

Formula

a(n) = n!*A000984(n)*A034386(n)/A034386(2n). - M. F. Hasler, Feb 26 2014

A166871 Permutation of the integers: 3 positives, 2 negatives.

Original entry on oeis.org

0, 1, 2, 3, -1, -2, 4, 5, 6, -3, -4, 7, 8, 9, -5, -6, 10, 11, 12, -7, -8, 13, 14, 15, -9, -10, 16, 17, 18, -11, -12, 19, 20, 21, -13, -14, 22, 23, 24, -15, -16, 25, 26, 27, -17, -18, 28, 29, 30, -19, -20, 31, 32, 33, -21, -22, 34, 35, 36, -23, -24, 37, 38, 39, -25, -26, 40, 41
Offset: 0

Author

Jaume Oliver Lafont, Oct 22 2009

Keywords

Comments

This sequence enumerates the denominators with sign in case p=3 and n=2 of:
log(p/n) = sum( i>=0, sum(p*i+1<=j<=p*(i+1),1/j) - sum(n*i+1<=j<=n*(i+1),1/j) )
Similar sequences can be constructed for the logarithm of any rational r=p/n (p,n>0), enumerating p positive integers and n negative integers every p+n terms.
Case p=2, n=1 is A166711.
Case p=1, n=1 is A001057.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{0,1,2,3,-1,-2,4,5,6,-3}, 100] (* G. C. Greubel, May 27 2016 *)

Formula

Sum_{k>0} 1/a(k) = log(3/2).
G.f.: x*(1+2*x+3*x^2-x^3-2*x^4+2*x^5+x^6-x^8)/((x-1)^2*(x^4+x^3+x^2+x+1)^2 ).

Extensions

keyword frac removed Jaume Oliver Lafont, Nov 02 2009

A165896 a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-1)*a(n-2)+a(n-1)*a(n-3)+a(n-2)*a(n-3))/a(n-4) with four initial ones.

Original entry on oeis.org

1, 1, 1, 1, 6, 51, 3001, 9180001, 14050074147451, 3870680638643416483474006, 4992392071450646411005278674572370014340582601, 2715030052293379508289500941366397276374058263752394148988972928520177978202810359001
Offset: 0

Author

Jaume Oliver Lafont, Sep 29 2009

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^2+a[n-2]^2+a[n-3]^2+ a[n-1]a[n-2]+ a[n-1]a[n-3]+a[n-2]a[n-3])/a[n-4]},a,{n,13}] (* Harvey P. Dale, May 21 2012 *)
  • PARI
    a(n)=if(n<4,1,(a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-1)*a(n-2)+a(n-1)*a(n-3)+a(n-2)*a(n-3))/a(n-4))

Formula

a(n) ~ 1/sqrt(10) * c^(t^n), where t = A058265 = 1.8392867552141611325518525646532866..., c = 1.2712241060822553131735186905646486868228186258439... . - Vaclav Kotesovec, May 06 2015
a(n) = 10*a(n-1)*a(n-2)*a(n-3)-a(n-1)-a(n-2)-a(n-3)-a(n-4). - Bruno Langlois, Aug 21 2016

A164916 Denominators of a BBP series for Pi/4.

Original entry on oeis.org

1, -8, -20, -24, 144, -384, -832, -896, 4352, -10240, -21504, -22528, 102400, -229376, -475136, -491520, 2162688, -4718592, -9699328, -9961472, 42991616, -92274688, -188743680, -192937984, 822083584, -1744830464, -3556769792
Offset: 0

Author

Jaume Oliver Lafont, Aug 31 2009

Keywords

Comments

From the BBP formula for Pi, the following expression for Pi/4 in unit numerators is obtained
Pi/4 = Sum((1/(8k+1)+1/(-2*(8k+4))+1/(-4*(8k+5))+1/(-4*(8k+6)))/16^k, k>=0)
Therefore a(n) such that
a(4*n) = (8*n+1)*16^n.
a(4*n+1) = -2*(8*n+4)*16^n.
a(4*n+2) = -4*(8*n+5)*16^n.
a(4*n+3) = -4*(8*n+6)*16^n.
has
Sum_{n >= 0} (1/a(n)) = Pi/4.
Using PARI/GP suminf(n=0,1/(2^(n-2)*(2*(-1+(-1)^n+(1-I)*(-I)^n+(1+I)*I^n)+(-3+3*(-1)^n+(4-I)*(-I)^n+(4+I)*I^n)*n)))= 0.7853981633974483096156608454...=Pi/4. - Alexander R. Povolotsky, Sep 01 2009

Programs

  • Mathematica
    CoefficientList[Series[(1 - 8*x - 20*x^2 - 24*x^3 + 112*x^4 - 128*x^5 - 192*x^6 - 128*x^7)/(1 - 16*x^4)^2, {x,0,50}], x] (* G. C. Greubel, Feb 25 2017 *)
  • PARI
    x='x + O('x^50); Vec((1 - 8*x - 20*x^2 - 24*x^3 + 112*x^4 - 128*x^5 - 192*x^6 - 128*x^7)/(1 - 16*x^4)^2) \\ G. C. Greubel, Feb 25 2017

Formula

G.f.: (1-8*x-20*x^2-24*x^3+112*x^4-128*x^5-192*x^6-128*x^7)/(1-16*x^4)^2.
a(n)= 2^(n-2)*(2*(-1+(-1)^n+(1-I)*(-I)^n+(1+I)*I^n)+(-3+3*(-1)^n+(4-I)*(-I)^n+(4+I)*I^n)*n). - Alexander R. Povolotsky, Sep 01 2009

Extensions

Comment section corrected by Jaume Oliver Lafont, Sep 03 2009

A157327 Egyptian fraction expansion for Pi/4 = arctan(1/2) + arctan(1/3) (Hutton 1776).

Original entry on oeis.org

2, 3, -24, -81, 160, 1215, -896, -15309, 4608, 177147, -22528, -1948617, 106496, 20726199, -491520, -215233605, 2228224, 2195382771, -9961472, -22082967873, 44040192, 219667417263, -192937984, -2165293113021, 838860800
Offset: 0

Author

Jaume Oliver Lafont, Feb 27 2009

Keywords

Comments

Sum_{n>=0} 1/a(n) = Pi/4.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 (1 - 4 x^2)/(1 + 4 x^2)^2 + 3 x (1 - 9 x^2)/(1 + 9 x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 12 2012 *)

Formula

G.f.: 2*(1-4*x^2)/(1+4*x^2)^2 + 3*x*(1-9*x^2)/(1+9*x^2)^2.

A176696 E.g.f.: exp(6*arcsin(x))-6*arcsin(x).

Original entry on oeis.org

1, 0, 36, 216, 1440, 9936, 74880, 608040, 5391360, 51732000, 539136000, 6055025400, 73322496000, 950831881200, 13198049280000, 194943875747400, 3061947432960000, 50884296047208000, 894088650424320000
Offset: 0

Author

Jaume Oliver Lafont, Apr 24 2010

Keywords

Comments

Sum_{k>=0} a(k)/(2^k*k!) = e^Pi - Pi (A018938).

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[6ArcSin[x]]-6ArcSin[x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 11 2012 *)
  • PARI
    a(n)=polcoeff(exp(6*asin(x))-6*asin(x),n)*n!

A167205 a(n) = (3^n+1)/(3-(-1)^n).

Original entry on oeis.org

1, 1, 5, 7, 41, 61, 365, 547, 3281, 4921, 29525, 44287, 265721, 398581, 2391485, 3587227, 21523361, 32285041, 193710245, 290565367, 1743392201, 2615088301, 15690529805, 23535794707, 141214768241, 211822152361, 1270932914165
Offset: 0

Author

Jaume Oliver Lafont, Oct 30 2009

Keywords

Comments

This sequence is (3^n + 1) divided by the highest possible power of 2, which is 4 for odd n and 2 for even n. It is never divisible by 8 or any higher power of 2, which implies Levi ben Gerson's observation that (3^n + 1 = 2^k) has no solution for n > 1. Cf. the comments and links to A235365. - Joe Slater, Apr 02 2017

Crossrefs

Programs

  • GAP
    List([0..27],n->(3^n+1)/(3-(-1)^n)); # Muniru A Asiru, Mar 05 2018
  • Maple
    a:=n->(3^n+1)/(3-(-1)^n): seq(a(n),n=0..27); # Muniru A Asiru, Mar 05 2018
  • Mathematica
    CoefficientList[Series[(1+x-5x^2-3x^3)/((1+x)(1-x)(1+3x)(1-3x)), {x,0,30}],x] (* or *) LinearRecurrence[{0,10,0,-9},{1,1,5,7},30] (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    a(n) = (3^n+1)/(3-(-1)^n); \\ Altug Alkan, Mar 05 2018
    

Formula

a(n) = 10*a(n-2) - 9*a(n-4).
G.f.: (1 + x - 5*x^2 - 3*x^3)/((1+x)*(1-x)*(1+3*x)*(1-3*x)).
a(n) = numerator((1/4)^n + (3/4)^n), n > 0.