cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Bruno Langlois

Bruno Langlois's wiki page.

Bruno Langlois has authored 7 sequences.

A354597 a(n) is the smallest number k>0 such that -n is not a quadratic residue modulo k.

Original entry on oeis.org

3, 4, 5, 3, 4, 4, 3, 5, 4, 3, 7, 5, 3, 4, 7, 3, 4, 4, 3, 11, 4, 3, 5, 9, 3, 4, 5, 3, 4, 4, 3, 5, 4, 3, 8, 7, 3, 4, 7, 3, 4, 4, 3, 7, 4, 3, 5, 5, 3, 4, 7, 3, 4, 4, 3, 11, 4, 3, 8, 7, 3, 4, 5, 3, 4, 4, 3, 5, 4, 3, 7, 5, 3, 4, 8, 3, 4, 4, 3, 11, 4, 3, 5, 9, 3, 4, 5, 3, 4, 4, 3, 5, 4, 3, 7, 9, 3, 4, 7, 3
Offset: 1

Author

Bruno Langlois, Jul 08 2022

Keywords

Comments

All values are prime powers, and every prime power except 2 appears in the sequence. This can be proved using the Chinese remainder theorem.

Crossrefs

Cf. A139401.

Programs

  • PARI
    a(n) = my(k=2); while (issquare(Mod(-n, k)), k++); k; \\ Michel Marcus, Jul 08 2022

A275695 a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1; for n>6, a(n) = ( a(n-1)+a(n-3)+a(n-5) )*( a(n-2)+a(n-4)+a(n-6) ) / a(n-7).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 33, 385, 13825, 5474305, 75873853441, 415386585427968001, 3501887406773528570406162401, 44079910680970588907541344275243042224979209, 400942556117903539711475671972145122347091674105174721165559627509313
Offset: 0

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1,1,1,1,1]; [n le 7 select I[n] else (Self(n-1) + Self(n-3) + Self(n-5))*(Self(n-2) + Self(n-4) + Self(n-6))/Self(n-7): n in [1..17]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] + a[n - 3] + a[n - 5]) (a[n - 2] + a[n - 4] + a[n - 6])/a[n - 7], a[0] == a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == 1}, a, {n, 0, 16}] (* Michael De Vlieger, Aug 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,((g+e+c)(f+d+b))/a}; NestList[ nxt,{1,1,1,1,1,1,1},20][[All,1]] (* Harvey P. Dale, May 04 2019 *)
  • PARI
    a(n) = if (n <=6, 1, (a(n-1)+a(n-3)+a(n-5))*(a(n-2)+a(n-4)+a(n-6))/a(n-7)); \\ Michel Marcus, Aug 25 2016
    
  • Ruby
    def A(m, n)
      a = Array.new(2 * m + 1, 1)
      ary = [1]
      while ary.size < n + 1
        i = (1..m).inject(0){|s, i| s + a[2 * i - 1]} * (1..m).inject(0){|s, i| s + a[2 * i]}
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A275695(n)
      A(3, n)
    end # Seiichi Manyama, Aug 27 2016
    

Formula

a(n) = (8-4*(-1)^n)*a(n-1)*a(n-3)*a(n-5) - a(n-2) - a(n-4) - a(n-6).

A276175 a(n) = (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 8, 36, 666, 222111, 685187756, 2819713283228248, 644335913093223286486628176, 5604757351123068775966272886689217889936356651, 14861563788248216173988661093334637018340529129342104300621091389266132702213641
Offset: 0

Author

Bruno Langlois, Aug 23 2016

Keywords

Comments

Conjecture: a(n) is an integer for all n >= 0. It has been checked by computer for n <= 40. A proof was proposed by 'mercio' as an answer to the MSE question, which however lacks details and heavily relies on computation. [Updated by Max Alekseyev, May 07 2023]

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] + 1) (a[n - 2] + 1) (a[n - 3] + 1)/a[n - 4],
    a[0] == a[1] == a[2] == a[3] == 1}, a, {n, 0, 12}] (* Michael De Vlieger, Aug 25 2016 *)
    a[ n_] := With[{m = Max[3 - n, n]}, If[ m < 4, 1, (a[m - 1] + 1) (a[m - 2] + 1) (a[m - 3] + 1)/a[m - 4]]]; (* Michael Somos, Jun 02 2019 *)
  • PARI
    a(n) = if (n <=3, 1, (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4)); \\ Michel Marcus, Aug 23 2016
    
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(1){|s, i| s * (i + 1)}
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276175(n)
      A(4, n)
    end # Seiichi Manyama, Aug 23 2016

Formula

Let b(n) = (b(n-1)*b(n-2)*b(n-3)+1)/b(n-4) with b(0) = 1/2, b(1) = 4, b(2) = b(3) = 1/2, then a(n) = b(n)*b(n+1)*b(n+2). - Seiichi Manyama, Sep 03 2016
The sequence 4*b(n) is given by A362884. Correspondingly, a(n) = A362884(n) * A362884(n+1) * A362884(n+2) / 64. - Max Alekseyev, May 07 2023
a(n) = a(3-n), 0 = a(n)*a(n+4)*(a(n+4)+1) - a(n+5)*a(n+1)*(a(n+1)+1) for all n in Z. - Michael Somos, Feb 23 2019
log(a(n)) ~ c * A289917^n, where c = 0.26774381278698... - Vaclav Kotesovec, Aug 27 2021

A276130 a(0) = a(1) = a(2) = a(3) = a(4) = 1; for n>4, a(n) = ( a(n-1) +a(n-3) )*( a(n-2)+a(n-4) ) / a(n-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 10, 55, 649, 38881, 6414706, 24978826228, 2913605221297249, 112139525368095766797655, 8403341152380185679389503620974065, 146904111947501701959735285821948223340424963459227
Offset: 0

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Cf. A006721.

Programs

  • PARI
    a(n) = if (n<=4, 1, (9-3*(-1)^n)/2*a(n-1)*a(n-3)-a(n-2)-a(n-4)); \\ Michel Marcus, Aug 27 2016

Formula

a(n) = (9-3*(-1)^n)/2*a(n-1)*a(n-3)-a(n-2)-a(n-4).

A276124 a(0) = a(1) = a(2) = a(3) = 1; for n > 3, a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-1)*a(n-2)*a(n-3))/a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 4, 22, 589, 399253, 41144206447, 77387327118194895379, 10169897514576967837097322386922878932, 259050897146323086186965020577200627526185475088368701480903471601830
Offset: 0

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 3]^2 + a[n - 1] a[n - 2] a[n - 3])/a[n - 4], a[0] == a[1] == a[2] == a[3] == 1}, a, {n, 0, 11}] (* Michael De Vlieger, Aug 21 2016 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(0){|s, i| s + i * i} + a[1..-1].inject(:*)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276124(n)
      A(4, n)
    end # Seiichi Manyama, Aug 21 2016

Formula

a(n) = 8*a(n-1)*a(n-2)*a(n-3)-a(n-1)*a(n-2)-a(n-1)*a(n-3)-a(n-2)*a(n-3)-a(n-4).

A276123 a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1) + 1)*(a(n-2) + 1) / a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 10, 55, 154, 868, 2449, 13825, 39025, 220324, 621946, 3511351, 9912106, 55961284, 157971745, 891869185, 2517635809, 14213945668, 40124201194, 226531261495, 639469583290, 3610286238244, 10191389131441, 57538048550401, 162422756519761
Offset: 0

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1,4,10,55]; [n le 6 select I[n] else 17*Self(n-2)-17*Self(n-4)+Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 27 2016
  • Mathematica
    LinearRecurrence[{0, 17, 0, -17, 0, 1}, {1, 1, 1, 4, 10, 55}, 40] (* Vincenzo Librandi, Aug 27 2016 *)
    nxt[{a_,b_,c_}]:={b,c,((c+1)(b+1))/a}; NestList[nxt,{1,1,1},30][[All,1]] (* Harvey P. Dale, Oct 01 2021 *)
  • PARI
    Vec((1+x-16*x^2-13*x^3+10*x^4+4*x^5)/((1-x)*(1+x)*(1-16*x^2+x^4)) + O(x^30)) \\ Colin Barker, Aug 21 2016
    

Formula

a(n) = (9-3*(-1)^n)/2*a(n-1) - a(n-2) - 1.
From Colin Barker, Aug 21 2016: (Start)
a(n) = 17*a(n-2) - 17*a(n-4) + a(n-6) for n > 5.
G.f.: (1 + x - 16*x^2 - 13*x^3 + 10*x^4 + 4*x^5) / ((1-x)*(1+x)*(1 - 16*x^2 + x^4)). (End)
a(2n+1) = A073352(n). a(2n) = A048907(n). - R. J. Mathar, Jul 04 2024

Extensions

More terms from Colin Barker, Aug 21 2016

A276122 a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1)^2+a(n-2)^2+a(n-1)+a(n-2))/a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 22, 526, 69427, 219111589, 91273561736491, 119994570874632853695766, 65713991236617279734602790963627271046, 47311933073383646516067037755547920981262829886906923065810924
Offset: 0

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 1] + a[n - 2])/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 11}] (* Michael De Vlieger, Aug 21 2016 *)

Formula

a(n) = 6*a(n-1)*a(n-2)-a(n-3)-1.
a(n) ~ 1/6 * c^(phi^n), where c = 2.059783590102273... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 20 2017

Extensions

a(10) corrected by Seiichi Manyama, Aug 21 2016