cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A276126 a(0) = a(1) = a(2) = a(3) = a(4) = 1; for n>4, a(n) = ( a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-4)^2+a(n-1)*a(n-2)*a(n-3)*a(n-4) ) / a(n-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 33, 1281, 1853441, 3826997739521, 2989151785658720873470945, 271581474754155314350055167823358355425497243141, 57581776430597685625970981157448022010386123824977761496513036956000541901241585948341716033
Offset: 0

Views

Author

Seiichi Manyama, Aug 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,(e^2+d^2+c^2+b^2+e*d*c*b)/a}; NestList[nxt,{1,1,1,1,1},15][[All,1]] (* Harvey P. Dale, Aug 08 2022 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(0){|s, i| s + i * i} + a[1..-1].inject(:*)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276126(n)
      A(5, n)
    end

Formula

a(n) = 10*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-1)*a(n-2)*a(n-3) - a(n-2)*a(n-3)*a(n-4) - a(n-3)*a(n-4)*a(n-1) - a(n-4)*a(n-1)*a(n-2) - a(n-5).
Showing 1-1 of 1 results.