cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A276175 a(n) = (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 8, 36, 666, 222111, 685187756, 2819713283228248, 644335913093223286486628176, 5604757351123068775966272886689217889936356651, 14861563788248216173988661093334637018340529129342104300621091389266132702213641
Offset: 0

Views

Author

Bruno Langlois, Aug 23 2016

Keywords

Comments

Conjecture: a(n) is an integer for all n >= 0. It has been checked by computer for n <= 40. A proof was proposed by 'mercio' as an answer to the MSE question, which however lacks details and heavily relies on computation. [Updated by Max Alekseyev, May 07 2023]

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] + 1) (a[n - 2] + 1) (a[n - 3] + 1)/a[n - 4],
    a[0] == a[1] == a[2] == a[3] == 1}, a, {n, 0, 12}] (* Michael De Vlieger, Aug 25 2016 *)
    a[ n_] := With[{m = Max[3 - n, n]}, If[ m < 4, 1, (a[m - 1] + 1) (a[m - 2] + 1) (a[m - 3] + 1)/a[m - 4]]]; (* Michael Somos, Jun 02 2019 *)
  • PARI
    a(n) = if (n <=3, 1, (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4)); \\ Michel Marcus, Aug 23 2016
    
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(1){|s, i| s * (i + 1)}
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276175(n)
      A(4, n)
    end # Seiichi Manyama, Aug 23 2016

Formula

Let b(n) = (b(n-1)*b(n-2)*b(n-3)+1)/b(n-4) with b(0) = 1/2, b(1) = 4, b(2) = b(3) = 1/2, then a(n) = b(n)*b(n+1)*b(n+2). - Seiichi Manyama, Sep 03 2016
The sequence 4*b(n) is given by A362884. Correspondingly, a(n) = A362884(n) * A362884(n+1) * A362884(n+2) / 64. - Max Alekseyev, May 07 2023
a(n) = a(3-n), 0 = a(n)*a(n+4)*(a(n+4)+1) - a(n+5)*a(n+1)*(a(n+1)+1) for all n in Z. - Michael Somos, Feb 23 2019
log(a(n)) ~ c * A289917^n, where c = 0.26774381278698... - Vaclav Kotesovec, Aug 27 2021

A283329 a(n) = (1 + Sum_{j=1..K-1} a(n-j) + a(n-1)*a(n-K+1))/a(n-K) with a(1),...,a(K)=1, where K=4.

Original entry on oeis.org

1, 1, 1, 1, 5, 13, 33, 217, 617, 1633, 10813, 30805, 81601, 540401, 1539601, 4078401, 27009205, 76949213, 203838433, 1349919817, 3845921017, 10187843233, 67468981613, 192219101605, 509188323201, 3372099160801, 9607109159201, 25449228316801, 168537489058405
Offset: 1

Views

Author

N. J. A. Sloane, Mar 17 2017

Keywords

Crossrefs

Programs

  • Ruby
    def A(k, n)
      a = Array.new(k, 1)
      ary = [1]
      while ary.size < n
        j = (1..k - 1).inject(1){|s, i| s + a[-i]} + a[1] * a[-1]
        break if j % a[0] > 0
        a = *a[1..-1], j / a[0]
        ary << a[0]
      end
      ary
    end
    def A283329(n)
      A(4, n)
    end # Seiichi Manyama, Mar 18 2017

Formula

From Seiichi Manyama, Mar 18 2017: (Start)
a(3*n) = 3*a(3*n-1) - a(3*n-2) - 1,
a(3*n+1) = 3*a(3*n) - a(3*n-1) - 1,
a(3*n+2) = 7*a(3*n+1) - a(3*n) - 1. (End)
From Colin Barker, Nov 03 2020: (Start)
G.f.: x*(1 + x + x^2 - 50*x^3 - 46*x^4 - 38*x^5 + 33*x^6 + 13*x^7 + 5*x^8) / ((1 - x)*(1 + x + x^2)*(1 - 50*x^3 + x^6)).
a(n) = 51*a(n-3) - 51*a(n-6) + a(n-9).
(End)

Extensions

More terms from Seiichi Manyama, Mar 17 2017

A283330 a(n) = (1 + Sum_{j=1..K-1} a(n-j) + a(n-1)*a(n-K+1))/a(n-K) with a(1),...,a(K)=1, where K=5.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 16, 41, 106, 806, 2311, 6126, 16066, 122401, 351136, 931006, 2441881, 18604041, 53370241, 141506681, 371149801, 2827691726, 8111925376, 21508084401, 56412327826, 429790538206, 1232959286791, 3269087322166, 8574302679706, 65325334115481
Offset: 1

Views

Author

N. J. A. Sloane, Mar 17 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n <= 5, 1, With[{m = If[Mod[n, 4] == 2, 8, 3]}, m a[n-1] - a[n-2] - 1]];
    Array[a, 30] (* Jean-François Alcover, Nov 03 2020 *)
  • Ruby
    def A(k, n)
      a = Array.new(k, 1)
      ary = [1]
      while ary.size < n
        j = (1..k - 1).inject(1){|s, i| s + a[-i]} + a[1] * a[-1]
        break if j % a[0] > 0
        a = *a[1..-1], j / a[0]
        ary << a[0]
      end
      ary
    end
    def A283330(n)
      A(5, n)
    end # Seiichi Manyama, Mar 18 2017

Formula

From Seiichi Manyama, Mar 18 2017: (Start)
a(4*n-1) = 3*a(4*n-2) - a(4*n-3) - 1,
a(4*n) = 3*a(4*n-1) - a(4*n-2) - 1,
a(4*n+1) = 3*a(4*n) - a(4*n-1) - 1,
a(4*n+2) = 8*a(4*n+1) - a(4*n) - 1. (End)
From Colin Barker, Nov 03 2020: (Start)
G.f.: x*(1 + x + x^2 + x^3 - 152*x^4 - 147*x^5 - 137*x^6 - 112*x^7 + 106*x^8 + 41*x^9 + 16*x^10 + 6*x^11) / ((1 - x)*(1 + x)*(1 + x^2)*(1 - 152*x^4 + x^8)).
a(n) = 153*a(n-4) - 153*a(n-8) + a(n-12) for n>12.
(End)

Extensions

More terms from Seiichi Manyama, Mar 17 2017

A276284 a(0) = a(1) = a(2) = a(3) = a(4) = 1; for n > 4, a(n) = ( a(n-1)+a(n-3)+1 )*( a(n-2)+a(n-4)+1 ) / a(n-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 9, 33, 385, 13825, 5474305, 8430415841, 1398605982547209, 30625582893143965429313, 3098236789946633955987434183345281, 17332850039068891068793031113694107707268123637761
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2016

Keywords

Crossrefs

Cf. A276123.

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] + a[n - 3] + 1) (a[n - 2] + a[n - 4] + 1)/a[n - 5], a[0] == a[1] == a[2] == a[3] == a[4] == 1}, a, {n, 0, 14}] (* Michael De Vlieger, Aug 27 2016 *)
    nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,(e+c+1) (d+b+1)/a}; NestList[nxt,{1,1,1,1,1},15][[All,1]] (* Harvey P. Dale, Dec 14 2021 *)
  • Ruby
    def A(m, n)
      a = Array.new(2 * m + 1, 1)
      ary = [1]
      while ary.size < n + 1
        i = (1..m).inject(1){|s, i| s + a[2 * i - 1]} * (1..m).inject(1){|s, i| s + a[2 * i]}
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276284(n)
      A(2, n)
    end

Formula

a(n) = (8-4*(-1)^n)*a(n-1)*a(n-3) - a(n-2) - a(n-4) - 1 for n>3.

A276308 a(n) = (a(n-1)+1)*(a(n-3)+1)/a(n-4) for n > 3, a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 4, 10, 22, 115, 319, 736, 3886, 10816, 24991, 131989, 367405, 848947, 4483720, 12480934, 28839196, 152314471, 423984331, 979683706, 5174208274, 14402986300, 33280406797, 175770766825, 489277549849, 1130554147381, 5971031863756, 16621033708546
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2016

Keywords

Crossrefs

Programs

  • PARI
    Vec((1+x+x^2-34*x^3-31*x^4-25*x^5+22*x^6+10*x^7+4*x^8)/((1-x)*(1+x+x^2)*(1-34*x^3+x^6)) + O(x^35)) \\ Colin Barker, Aug 29 2016
    
  • PARI
    a276308(maxn) = {a=vector(maxn); a[1]=a[2]=a[3]=a[4]=1; for(n=5, maxn, a[n]=(a[n-1]+1)*(a[n-3]+1)/a[n-4]); a} \\ Colin Barker, Aug 30 2016
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = (a[1] + 1) * (a[-1] + 1)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276308(n)
      A(4, n)
    end
    

Formula

From Colin Barker, Aug 29 2016: (Start)
a(n) = 35*a(n-3)-35*a(n-6)+a(n-9) for n>8.
G.f.: (1+x+x^2-34*x^3-31*x^4-25*x^5+22*x^6+10*x^7+4*x^8) / ((1-x)*(1+x+x^2)*(1-34*x^3+x^6)).
(End)
Showing 1-5 of 5 results.