cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A276123 a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1) + 1)*(a(n-2) + 1) / a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 10, 55, 154, 868, 2449, 13825, 39025, 220324, 621946, 3511351, 9912106, 55961284, 157971745, 891869185, 2517635809, 14213945668, 40124201194, 226531261495, 639469583290, 3610286238244, 10191389131441, 57538048550401, 162422756519761
Offset: 0

Views

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1,4,10,55]; [n le 6 select I[n] else 17*Self(n-2)-17*Self(n-4)+Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 27 2016
  • Mathematica
    LinearRecurrence[{0, 17, 0, -17, 0, 1}, {1, 1, 1, 4, 10, 55}, 40] (* Vincenzo Librandi, Aug 27 2016 *)
    nxt[{a_,b_,c_}]:={b,c,((c+1)(b+1))/a}; NestList[nxt,{1,1,1},30][[All,1]] (* Harvey P. Dale, Oct 01 2021 *)
  • PARI
    Vec((1+x-16*x^2-13*x^3+10*x^4+4*x^5)/((1-x)*(1+x)*(1-16*x^2+x^4)) + O(x^30)) \\ Colin Barker, Aug 21 2016
    

Formula

a(n) = (9-3*(-1)^n)/2*a(n-1) - a(n-2) - 1.
From Colin Barker, Aug 21 2016: (Start)
a(n) = 17*a(n-2) - 17*a(n-4) + a(n-6) for n > 5.
G.f.: (1 + x - 16*x^2 - 13*x^3 + 10*x^4 + 4*x^5) / ((1-x)*(1+x)*(1 - 16*x^2 + x^4)). (End)
a(2n+1) = A073352(n). a(2n) = A048907(n). - R. J. Mathar, Jul 04 2024

Extensions

More terms from Colin Barker, Aug 21 2016

A276453 a(n) = (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4) with a(0) = a(1) = 1, a(2) = 2, a(3) = 6.

Original entry on oeis.org

1, 1, 2, 6, 42, 903, 136052, 881442036, 2581196224947732, 342795531574625708871288171, 5732512385084161208637718426682572229606557631, 5754497648510061274107897581706624823818534711463525598519384262130236399970112
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2016

Keywords

Comments

From Antoine de Saint Germain, Dec 30 2024: (Start)
Sequence consists of integers, see Math StackExchange link.
Values of a unitary Y-frieze pattern associated to the linearly oriented quiver K4 (i.e., the quiver whose underlying graph is the complete graph on the vertices {1,2,3,4}, oriented such that i -> j whenever i < j). (End)

Crossrefs

Programs

  • Magma
    I:=[1, 1, 2, 6]; [n le 4 select I[n] else (Self(n-1)+1)*(Self(n-2)+1)*(Self(n-3)+1)/Self(n-4): n in [1..13]]; // Vincenzo Librandi, Dec 30 2024
  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] + 1) (a[n - 2] + 1) (a[n - 3] + 1)/a[n - 4], a[0] == 1, a[1] == 1, a[2] == 2, a[3] == 6}, a, {n, 0, 11}] (* Michael De Vlieger, Sep 03 2016 *)
  • Ruby
    def A276453(n)
      a = [1, 1, 2, 6]
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(1){|s, i| s * (i + 1)}
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    

Formula

a(n) = A051786(n)*A051786(n+1)*A051786(n+2).

A276308 a(n) = (a(n-1)+1)*(a(n-3)+1)/a(n-4) for n > 3, a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 4, 10, 22, 115, 319, 736, 3886, 10816, 24991, 131989, 367405, 848947, 4483720, 12480934, 28839196, 152314471, 423984331, 979683706, 5174208274, 14402986300, 33280406797, 175770766825, 489277549849, 1130554147381, 5971031863756, 16621033708546
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2016

Keywords

Crossrefs

Programs

  • PARI
    Vec((1+x+x^2-34*x^3-31*x^4-25*x^5+22*x^6+10*x^7+4*x^8)/((1-x)*(1+x+x^2)*(1-34*x^3+x^6)) + O(x^35)) \\ Colin Barker, Aug 29 2016
    
  • PARI
    a276308(maxn) = {a=vector(maxn); a[1]=a[2]=a[3]=a[4]=1; for(n=5, maxn, a[n]=(a[n-1]+1)*(a[n-3]+1)/a[n-4]); a} \\ Colin Barker, Aug 30 2016
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = (a[1] + 1) * (a[-1] + 1)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276308(n)
      A(4, n)
    end
    

Formula

From Colin Barker, Aug 29 2016: (Start)
a(n) = 35*a(n-3)-35*a(n-6)+a(n-9) for n>8.
G.f.: (1+x+x^2-34*x^3-31*x^4-25*x^5+22*x^6+10*x^7+4*x^8) / ((1-x)*(1+x+x^2)*(1-34*x^3+x^6)).
(End)

A362884 a(n) = (a(n-1)*a(n-2)*a(n-3)+64)/(4*a(n-4)) with a(0) = a(2) = a(3) = 2 and a(1) = 16.

Original entry on oeis.org

2, 16, 2, 2, 16, 2, 16, 72, 37, 5336, 222112, 152263946, 1219335473828432, 1932041718420459629645062, 403742785702569426305018937234491996105486, 1561663327784579146423924791055619905538560428937482474084426146608982032
Offset: 0

Views

Author

Max Alekseyev, May 07 2023

Keywords

Comments

Conjecture 1: all terms are integer.
Conjecture 2: a(n) is never divisible by 64.

Crossrefs

Cf. A276175.

Formula

For n >= 2, a(n) = 4 * A276175(n) * A276175(n-2) / (A276175(n-1) * (A276175(n-1) + 1)).
Showing 1-4 of 4 results.