cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006228 Expansion of e.g.f. exp(arcsin(x)).

Original entry on oeis.org

1, 1, 1, 2, 5, 20, 85, 520, 3145, 26000, 204425, 2132000, 20646925, 260104000, 2993804125, 44217680000, 589779412625, 9993195680000, 151573309044625, 2898026747200000, 49261325439503125, 1049085682486400000, 19753791501240753125, 463695871658988800000
Offset: 0

Views

Author

Keywords

References

  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are expansions of sin(arcsinh(x)) and cos(arcsinh(x)).
Bisections are A101927 and A101928.
Row sums of A385343.
Cf. A002019.
Cf. A166741, A166748. - Jaume Oliver Lafont, Oct 24 2009

Programs

  • Maple
    a:= n-> n!*coeff(series(exp(arcsin(x)), x, n+1), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 17 2018
  • Mathematica
    Distribute[ CoefficientList[ Series[ E^ArcSin[x], {x, 0, 21}], x] * Table[ n!, {n, 0, 21}]] (* Robert G. Wilson v, Feb 10 2004 *)
    With[{nn=30},CoefficientList[Series[Exp[ArcSin[x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Feb 26 2013 *)
    Table[FullSimplify[2^(n-2) * (Exp[Pi/2]-(-1)^n*Exp[-Pi/2]) * Gamma[(n-I)/2] * Gamma[(n+I)/2] / Pi], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2014 *)
  • Maxima
    a(n):=(n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2))*(-1)^(k-j),j,1,k))*binomial(k+n-1,n-1),k,1,n-m))/(m-1)!,m,1,n); /* Vladimir Kruchinin, Sep 12 2010 */

Formula

i even: a_i = Product_{j=1..i/2-1} 1 + 4j^2, i odd: a_i = Product_{j=1..(i-1)/2} 2 + 4j(j-1). - Cris Moore (moore(AT)santafe.edu), Jan 31 2001
a(0)=1, a(1)=1, a(n) = (1+(n-2)^2)*a(n-2) for n >= 2. Jaume Oliver Lafont, Oct 24 2009
a(n) = (n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(C(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*C(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!, i=0..floor(j/2))*(-1)^(k-j), j=1..k))*C(k+n-1,n-1), k=1..n-m))/(m-1)!, m=1..n), n>0. - Vladimir Kruchinin, Sep 12 2010
E.g.f.: exp(arcsin(x))=1+2z/(H(0)-z); H(k)=4k+2+z^2*(4k^2+8k+5)/H(k+1), where z=x/((1-x^2)^1/2); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2011
a(n) ~ (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 23 2013
a(n) = 2^(n-2) * (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * GAMMA((n-I)/2) * GAMMA((n+I)/2) / Pi. - Vaclav Kotesovec, Nov 06 2014

Extensions

More terms from Christian G. Bower

A166748 E.g.f.: exp(6*arcsin(x)).

Original entry on oeis.org

1, 6, 36, 222, 1440, 9990, 74880, 609390, 5391360, 51798150, 539136000, 6060383550, 73322496000, 951480217350, 13198049280000, 195053444556750, 3061947432960000, 50908949029311750, 894088650424320000
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 21 2009

Keywords

Comments

exp(6*arcsin(1/2)) is Aleksandr Gelfond's constant exp(Pi).

Crossrefs

Programs

  • Mathematica
    Round[Table[3*2^(n-1)*(E^(3*Pi)-(-1)^n*E^(-3*Pi))*Abs[Gamma[n/2+3*I]]^2/Pi,{n,0,20}]] (* Vaclav Kotesovec, Nov 06 2014 *)
    CoefficientList[Series[Exp[6*ArcSin[x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Nov 06 2014 *)
  • PARI
    A166748(n)=round(norm(gamma(n/2+3*I))/Pi*if(n%2,cosh(3*Pi),sinh(3*Pi))*3<M. F. Hasler, Oct 25 2009
    
  • PARI
    a(n)=polcoeff(exp(6*asin(x)),n)*n!
    
  • PARI
    a(n)=(1+5*(n%2))*prod(k=0,n\2-1,(2*k+n%2)^2+36) \\ Jaume Oliver Lafont, Oct 28 2009

Formula

Contribution from Alexander R. Povolotsky, Oct 24 2009: (Start)
a(n+2) = (n^2+36)*a(n), a(0)=1, a(1)=6.
The above recurrence leads to
a(n) = (3*2^n*gamma(-3*i+n/2)*gamma(3*i+n/2)*(cos((n*Pi)/2)+i*sin((n*Pi)/2))*sinh(((6-i*n)*Pi)/2))/Pi where "i" is imaginary unit. (End)
a(n) = 3*2^(n-1)*(exp(3*Pi)-(-1)^n*exp(-3*Pi))*|Gamma(n/2+3i)|^2/Pi. - R. J. Mathar and M. F. Hasler, Oct 25 2009
a(n) ~ 6 * (exp(3*Pi) - (-1)^n*exp(-3*Pi)) * n^(n-1) / exp(n). - Vaclav Kotesovec, Nov 06 2014

Extensions

Minor edits by Vaclav Kotesovec, Nov 06 2014

A293191 a(n) = n! * [x^n] exp(n*arcsin(x)).

Original entry on oeis.org

1, 1, 4, 30, 320, 4420, 74880, 1502200, 34816000, 915267600, 26907545600, 874679634400, 31150846771200, 1206169954600000, 50449154129920000, 2266730426366640000, 108883850653859840000, 5568313898902866592000, 302047359993635143680000, 17321727685903810436800000
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 02 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n ArcSin[x]], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ 2^((n-1)/2) * exp(Pi*n/4 - n) * n^n. - Vaclav Kotesovec, Oct 02 2017
a(0) = a(1) = 1; a(n) = 2 * Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k-1). - Ilya Gutkovskiy, Nov 21 2020
Showing 1-3 of 3 results.