cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006228 Expansion of e.g.f. exp(arcsin(x)).

Original entry on oeis.org

1, 1, 1, 2, 5, 20, 85, 520, 3145, 26000, 204425, 2132000, 20646925, 260104000, 2993804125, 44217680000, 589779412625, 9993195680000, 151573309044625, 2898026747200000, 49261325439503125, 1049085682486400000, 19753791501240753125, 463695871658988800000
Offset: 0

Views

Author

Keywords

References

  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are expansions of sin(arcsinh(x)) and cos(arcsinh(x)).
Bisections are A101927 and A101928.
Row sums of A385343.
Cf. A002019.
Cf. A166741, A166748. - Jaume Oliver Lafont, Oct 24 2009

Programs

  • Maple
    a:= n-> n!*coeff(series(exp(arcsin(x)), x, n+1), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 17 2018
  • Mathematica
    Distribute[ CoefficientList[ Series[ E^ArcSin[x], {x, 0, 21}], x] * Table[ n!, {n, 0, 21}]] (* Robert G. Wilson v, Feb 10 2004 *)
    With[{nn=30},CoefficientList[Series[Exp[ArcSin[x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Feb 26 2013 *)
    Table[FullSimplify[2^(n-2) * (Exp[Pi/2]-(-1)^n*Exp[-Pi/2]) * Gamma[(n-I)/2] * Gamma[(n+I)/2] / Pi], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2014 *)
  • Maxima
    a(n):=(n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2))*(-1)^(k-j),j,1,k))*binomial(k+n-1,n-1),k,1,n-m))/(m-1)!,m,1,n); /* Vladimir Kruchinin, Sep 12 2010 */

Formula

i even: a_i = Product_{j=1..i/2-1} 1 + 4j^2, i odd: a_i = Product_{j=1..(i-1)/2} 2 + 4j(j-1). - Cris Moore (moore(AT)santafe.edu), Jan 31 2001
a(0)=1, a(1)=1, a(n) = (1+(n-2)^2)*a(n-2) for n >= 2. Jaume Oliver Lafont, Oct 24 2009
a(n) = (n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(C(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*C(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!, i=0..floor(j/2))*(-1)^(k-j), j=1..k))*C(k+n-1,n-1), k=1..n-m))/(m-1)!, m=1..n), n>0. - Vladimir Kruchinin, Sep 12 2010
E.g.f.: exp(arcsin(x))=1+2z/(H(0)-z); H(k)=4k+2+z^2*(4k^2+8k+5)/H(k+1), where z=x/((1-x^2)^1/2); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2011
a(n) ~ (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 23 2013
a(n) = 2^(n-2) * (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * GAMMA((n-I)/2) * GAMMA((n+I)/2) / Pi. - Vaclav Kotesovec, Nov 06 2014

Extensions

More terms from Christian G. Bower

A166741 E.g.f.: exp(2*arcsin(x)).

Original entry on oeis.org

1, 2, 4, 10, 32, 130, 640, 3770, 25600, 199810, 1740800, 16983850, 181043200, 2122981250, 26794393600, 367275756250, 5358878720000, 84106148181250, 1393308467200000, 24643101417106250, 457005177241600000
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 21 2009

Keywords

Comments

exp(2*arcsin(1)) is Aleksandr Gelfond's constant.

Crossrefs

Programs

  • Maple
    seq(simplify(2^(n-1) * (cosh(Pi)*(1-(-1)^n) + sinh(Pi)*(1+(-1)^n)) * GAMMA((1/2)*n-I)*GAMMA((1/2)*n+I) / Pi), n=0..20); # Vaclav Kotesovec, Nov 06 2014
  • Mathematica
    CoefficientList[Series[E^(2*ArcSin[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
    FullSimplify[Table[2^(n-1) * (E^(Pi)-(-1)^n*E^(-Pi)) * Gamma[n/2-I] * Gamma[n/2+I] / Pi,{n,0,20}]] (* Vaclav Kotesovec, Nov 06 2014 *)
  • PARI
    for (n=0,25,print(polcoeff(exp(2*asin(x)),n)*n!,","))

Formula

a(n) ~ 2 * n^(n-1) * (exp(Pi) - (-1)^n/exp(Pi)) / exp(n). - Vaclav Kotesovec, Aug 04 2014
From Vaclav Kotesovec, Nov 06 2014: (Start)
a(n) = (n^2 - 4*n + 8)*a(n-2).
a(n) = 2^(n-1) * (exp(Pi)-(-1)^n*exp(-Pi)) * GAMMA(n/2-I) * GAMMA(n/2+I) / Pi.
(End)

A176696 E.g.f.: exp(6*arcsin(x))-6*arcsin(x).

Original entry on oeis.org

1, 0, 36, 216, 1440, 9936, 74880, 608040, 5391360, 51732000, 539136000, 6055025400, 73322496000, 950831881200, 13198049280000, 194943875747400, 3061947432960000, 50884296047208000, 894088650424320000
Offset: 0

Views

Author

Jaume Oliver Lafont, Apr 24 2010

Keywords

Comments

Sum_{k>=0} a(k)/(2^k*k!) = e^Pi - Pi (A018938).

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[6ArcSin[x]]-6ArcSin[x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 11 2012 *)
  • PARI
    a(n)=polcoeff(exp(6*asin(x))-6*asin(x),n)*n!
Showing 1-3 of 3 results.