cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A385343 Exponential Riordan array (1, arcsin(x)).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 0, 1, 0, 9, 0, 10, 0, 1, 0, 0, 64, 0, 20, 0, 1, 0, 225, 0, 259, 0, 35, 0, 1, 0, 0, 2304, 0, 784, 0, 56, 0, 1, 0, 11025, 0, 12916, 0, 1974, 0, 84, 0, 1, 0, 0, 147456, 0, 52480, 0, 4368, 0, 120, 0, 1, 0, 893025, 0, 1057221, 0, 172810, 0, 8778, 0, 165, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2025

Keywords

Examples

			Triangle starts:
  1;
  0,   1;
  0,   0,  1;
  0,   1,  0,   1;
  0,   0,  4,   0,  1;
  0,   9,  0,  10,  0,  1;
  0,   0, 64,   0, 20,  0, 1;
  0, 225,  0, 259,  0, 35, 0, 1;
		

Crossrefs

Essentialy same as A121408.
Row sums give A006228.

Programs

  • PARI
    T(n, k) = my(x='x+O('x^(n+1))); n!*polcoef(asin(x)^k/k!, n);

Formula

E.g.f. of column k (with leading zeros): arcsin(x)^k / k!
T(n,k) = A121408(n,k) for k > 0.

A002019 a(n) = a(n-1) - (n-1)(n-2)a(n-2).

Original entry on oeis.org

1, 1, 1, -1, -7, 5, 145, -5, -6095, -5815, 433025, 956375, -46676375, -172917875, 7108596625, 38579649875, -1454225641375, -10713341611375, 384836032842625, 3663118565923375, -127950804666254375, -1519935859717136875
Offset: 0

Views

Author

Keywords

References

  • Dwight, Tables of Integrals ..., Eq. 552.5, page 133.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are A102058 and A102059.
Cf. A006228.
Row sums of signed triangle A049218.
Cf. A000246.

Programs

  • Haskell
    a002019 n = a002019_list !! n
    a002019_list = 1 : 1 : zipWith (-)
       (tail a002019_list) (zipWith (*) a002019_list a002378_list)
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    I:=[1,1]; [1] cat [ n le 2 select I[n] else Self(n-1)-(n^2-3*n+2)*Self(n-2): n in [1..35]]; // Vincenzo Librandi, May 02 2015
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==1,a[n]==a[n-1]-(n-1)(n-2)a[n-2]}, a[n],{n,30}] (* Harvey P. Dale, May 02 2011 *)
    CoefficientList[Series[E^(ArcTan[x]),{x,0,20}],x]*Range[0,20]! (* Vaclav Kotesovec, Nov 06 2014 *)
  • Maxima
    a(n):=n!*sum(if oddp(m+n) then 0 else (-1)^((3*n+m)/2)/(2^m*m!)*sum(2^i*binomial(n-1,i-1)*m!/i!*stirling1(i,m),i,m,n),m,1,n); /* Vladimir Kruchinin, Aug 05 2010 */
    

Formula

E.g.f.: exp(arctan(x)).
a(n) = n!*sum(if oddp(m+n) then 0 else (-1)^((3*n+m)/2)/(2^m*m!)*sum(2^i*binomial(n-1,i-1)*m!/i!*stirling1(i,m),i,m,n),m,1,n), n>0. - Vladimir Kruchinin, Aug 05 2010
E.g.f.: exp(arctan(x)) = 1 + 2x/(H(0)-x); H(k) = 4k + 2 + x^2*(4k^2 + 8k + 5)/H(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2011
a(n+1) = a(n) - a(n-1) * A002378(n-2). - Reinhard Zumkeller, Feb 27 2012
E.g.f.: -2i*(B((1+ix)/2; (2-i)/2, (2+i)/2) - B(1/2; (2-i)/2, (2+i)/2)), for a(0)=0, a(1)=a(2)=a(3)=1, B(x;a,b) is the incomplete Beta function. - G. C. Greubel, May 01 2015
a(n) = i^n*n!*Sum_{r+s=n} (-1)^s*binomial(-i/2, r)*binomial(i/2,s) where i is the imaginary unit. See the Fib. Quart. link. - Michel Marcus, Jan 22 2017

Extensions

More terms from Herman P. Robinson

A101928 E.g.f. cos(arcsinh(x)) = sin(arccosh(x)) (even powers only).

Original entry on oeis.org

1, -1, 5, -85, 3145, -204425, 20646925, -2993804125, 589779412625, -151573309044625, 49261325439503125, -19753791501240753125, 9580588878101765265625, -5527999782664718558265625, 3742455852864014463945828125, -2937827844498251354197475078125, 2646982887892924470131925045390625
Offset: 1

Views

Author

Ralf Stephan, Dec 28 2004

Keywords

Comments

Absolute values are expansion of e.g.f. cosh(arcsin(x)).

Examples

			cos(arcsinh(x)) = 1 - x^2/2 + 5x^4/4! - 85x^6/6! + 3145x^8/8! - ...
		

Crossrefs

Bisection of A006228.

Programs

  • Maple
    seq(coeff(series(factorial(n)*cos(arcsinh(x)), x,n+1),x,n),n=0..40,2); # Muniru A Asiru, Jul 22 2018
  • Mathematica
    Table[n!*SeriesCoefficient[Cos[ArcSinh[x]],{x,0,n}],{n,0,40,2}] (* Vaclav Kotesovec, Oct 23 2013 *)
    Flatten[{1, Table[(-1)^(n+1)*Product[4*k^2 + 1, {k, 1, n}], {n, 0, 12}]}] (* Vaclav Kotesovec, Oct 10 2016 *)

Formula

E.g.f.: cos(arcsinh(x)) = sqrt(1+x^2)*(1-x^2*(1-5*x^2/(G(0)+5*x^2))); G(k) = (k+2)*(2*k+3)-x^2*(2*k^2+6*k+5)+x^2*(k+2)*(2*k+3)*(2*k^2+10*k+13)/G(k+1);
For cosh(arcsin(x)) = sqrt(1-x^2)*(1 + x^2*(1 + 5*x^2/(G(0) - 5*x^2))); G(k) = x^2*(2*k^2+6*k+5) + (k+2)*(2*k+3) - x^2*(k+2)*(2*k+3)*(2*k^2+10*k+13)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 19 2011
G.f.: 1 - x*(1 + x*(G(0) - 1)/(x-1)) where G(k) = 1 + ((2*k+2)^2+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) ~ (-1)^(n+1) * sinh(Pi/2) * 2^(2*n-2) * n^(2*n-3) / exp(2*n). - Vaclav Kotesovec, Oct 23 2013
For n>1, a(n) = (-1)^(n+1) * A277354(n-2). - Vaclav Kotesovec, Oct 10 2016

A121408 Triangle T(n,k) defined by the generating function: exp(y*arcsin(x))-1 = Sum_{n>=1} (Sum_{k=1..n} T(n,k)*y^k)*x^n/n!.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 9, 0, 10, 0, 1, 0, 64, 0, 20, 0, 1, 225, 0, 259, 0, 35, 0, 1, 0, 2304, 0, 784, 0, 56, 0, 1, 11025, 0, 12916, 0, 1974, 0, 84, 0, 1, 0, 147456, 0, 52480, 0, 4368, 0, 120, 0, 1, 893025, 0, 1057221, 0, 172810, 0, 8778, 0, 165, 0, 1, 0, 14745600, 0
Offset: 1

Views

Author

Emeric Deutsch, Jul 28 2006

Keywords

Comments

Row sums are equal to A006228(n). This is sequence A091885 with additional intertwining zeros.
F(n,m) = n!*T(n,m)/m! is a composite (akin to Riordan arrays) of F(x)=arcsin(x) and (F(x))^m = Sum_{n>=m} F(n,m)*x^n, and for o.g.f. G(x), G(arcsin(x)) = g(0) +Sum_{n>=1} Sum_{m=1..n} F(n,m)*g(m)*x^n, see the preprint. - Vladimir Kruchinin, Feb 10 2011
The unsigned matrix inverse is A136630 (with a different offset). - Peter Bala, Feb 23 2011
Also the Bell transform of A177145. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle starts:
  1;
  0,1;
  1,0,1;
  0,4,0,1;
  9,0,10,0,1;
  0,64,0,20,0,1;
Row polynomials R(6,x) = x^2*(x^2 + 2^2)*(x^2 + 4^2) = 64*x^2 + 20*x^4 + x^6 and
R(7,x) = x*(x^2 + 1)*(x^2 + 3^2)*(x^2 + 5^2) = 225*x + 259*x^3 + 35*x^5 + x^7. - _Peter Bala_, Aug 29 2012
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.

Crossrefs

Programs

  • Maple
    g:=exp(y*arcsin(x))-1: gser:=simplify(series(g,x=0,15)): for n from 1 to 12 do P[n]:=sort(n!*coeff(gser,x,n)) od: for n from 1 to 12 do seq(coeff(P[n],y,k),k=1..n) od; # yields sequence in triangular form
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n::odd,0,doublefactorial(n-1)^2), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[OddQ[#], 0, (# - 1)!!^2] &, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)

Formula

T(n,m) = ((n-1)!/(m-1)!) *sum_{k=1..n-m} sum_{j=1..k} binomial(k,j) *(2^(1-j) /(n-m+j)!) *sum{i=0..floor(j/2)} (-1)^((n-m)/2-i-j) *binomial(j,i) *(j-2*i)^(n-m+j) *binomial(k+n-1,n-1), n>m and even(n-m). [Vladimir Kruchinin, Feb 10 2011]
From Peter Bala, Aug 29 2012: (Start)
See A182971 for a version of the row reverse of this triangle.
Even-indexed row polynomial R(2*n,x) = x^2*prod(k=1..n-1, (x^2 + (2*k)^2) ).
Odd-indexed row polynomial R(2*n+1,x) = x*prod(k=1..n, (x^2 + (2*k-1)^2) ). See Berndt p.263. (End)
Sum_{k=0..n} T(n+1,k+1)*A000111(k) = n! = A000142(n). - Alexander Burstein, Aug 01 2025

A385369 Expansion of e.g.f. x + sqrt(x^2 + 1).

Original entry on oeis.org

1, 1, 1, 0, -3, 0, 45, 0, -1575, 0, 99225, 0, -9823275, 0, 1404728325, 0, -273922023375, 0, 69850115960625, 0, -22561587455281875, 0, 9002073394657468125, 0, -4348001449619557104375, 0, 2500100833531245335015625, 0, -1687568062633590601135546875, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(x+sqrt(x^2+1)))

Formula

E.g.f.: exp(arcsinh(x)).
E.g.f. A(x) satisfies A(x) = 1/A(-x).
a(n) = Sum_{k=0..n} i^(n-k) * A385343(n,k), where i is the imaginary unit.
a(n) = A177698(n-1) for n > 1.
a(2*n+1) = 0 for n > 0.
a(n) = 2^n * n! * binomial((n+1)/2,n)/(n+1).

A101927 E.g.f. of sin(arcsinh(x)) (odd powers only).

Original entry on oeis.org

1, -2, 20, -520, 26000, -2132000, 260104000, -44217680000, 9993195680000, -2898026747200000, 1049085682486400000, -463695871658988800000, 245758811979264064000000, -153845016299019304064000000, 112306861898284091966720000000, -94562377718355205435978240000000, 90969007365057707629411066880000000
Offset: 1

Views

Author

Ralf Stephan, Dec 28 2004

Keywords

Comments

Absolute values are expansion of sinh(arcsin(x)).

Examples

			sin(arcsinh(x)) = x - 2x^3/3! + 20x^5/5! - 520x^7/7! + 26000x^9/9! - ...
		

Crossrefs

Bisection of A006228.

Programs

  • Maple
    seq(coeff(series(factorial(n)*sin(arcsinh(x)), x,n+1),x,n),n=1..30,2); # Muniru A Asiru, Jul 22 2018
  • Mathematica
    Table[n!*SeriesCoefficient[Sin[ArcSinh[x]],{x,0,n}],{n,1,40,2}] (* Vaclav Kotesovec, Oct 23 2013 *)

Formula

E.g.f.: sin(arcsinh(x)) = x*sqrt(1+x^2)*(1 - 5*x^2/(G(0) + 5*x^2)); G(k) = (2*k+2)*(2*k+3) - x^2*(4*k^2+8*k+5) + x^2*(2*k+2)*(2*k+3)*(4*k^2+16*k+17)/G(k+1);
for sinh(arcsin(x)) = x*sqrt(1-x^2)*(1 + 5*x^2/(G(0) - 5*x^2)); G(k) = (2*k+2)*(2*k+3) + x^2*(4*k^2+8*k+5) - x^2*(2*k+2)*(2*k+3)*(4*k^2+16*k+17)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 19 2011
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 + (4*k^2+4*k+2)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) ~ (-1)^(n+1) * cosh(Pi/2) * 2^(2*n-1) * n^(2*n-2) / exp(2*n). - Vaclav Kotesovec, Oct 23 2013
|a(n+2)| = Product_{k=0..n} ((2k+1)^2+1). - Andrew Slattery, Jul 03 2022

Extensions

Name corrected by Andrew Slattery, Jul 03 2022

A166748 E.g.f.: exp(6*arcsin(x)).

Original entry on oeis.org

1, 6, 36, 222, 1440, 9990, 74880, 609390, 5391360, 51798150, 539136000, 6060383550, 73322496000, 951480217350, 13198049280000, 195053444556750, 3061947432960000, 50908949029311750, 894088650424320000
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 21 2009

Keywords

Comments

exp(6*arcsin(1/2)) is Aleksandr Gelfond's constant exp(Pi).

Crossrefs

Programs

  • Mathematica
    Round[Table[3*2^(n-1)*(E^(3*Pi)-(-1)^n*E^(-3*Pi))*Abs[Gamma[n/2+3*I]]^2/Pi,{n,0,20}]] (* Vaclav Kotesovec, Nov 06 2014 *)
    CoefficientList[Series[Exp[6*ArcSin[x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Nov 06 2014 *)
  • PARI
    A166748(n)=round(norm(gamma(n/2+3*I))/Pi*if(n%2,cosh(3*Pi),sinh(3*Pi))*3<M. F. Hasler, Oct 25 2009
    
  • PARI
    a(n)=polcoeff(exp(6*asin(x)),n)*n!
    
  • PARI
    a(n)=(1+5*(n%2))*prod(k=0,n\2-1,(2*k+n%2)^2+36) \\ Jaume Oliver Lafont, Oct 28 2009

Formula

Contribution from Alexander R. Povolotsky, Oct 24 2009: (Start)
a(n+2) = (n^2+36)*a(n), a(0)=1, a(1)=6.
The above recurrence leads to
a(n) = (3*2^n*gamma(-3*i+n/2)*gamma(3*i+n/2)*(cos((n*Pi)/2)+i*sin((n*Pi)/2))*sinh(((6-i*n)*Pi)/2))/Pi where "i" is imaginary unit. (End)
a(n) = 3*2^(n-1)*(exp(3*Pi)-(-1)^n*exp(-3*Pi))*|Gamma(n/2+3i)|^2/Pi. - R. J. Mathar and M. F. Hasler, Oct 25 2009
a(n) ~ 6 * (exp(3*Pi) - (-1)^n*exp(-3*Pi)) * n^(n-1) / exp(n). - Vaclav Kotesovec, Nov 06 2014

Extensions

Minor edits by Vaclav Kotesovec, Nov 06 2014

A091885 Triangle T(n,k) defined by the generating function cosh(sqrt(y)*arcsin(x)) + sqrt(y)*sinh(sqrt(y)*arcsin(x)) - 1 = Sum_{n>=1} Sum_{k=1..n} T(n,k)*y^k *x^n/n!.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 10, 1, 64, 20, 1, 225, 259, 35, 1, 2304, 784, 56, 1, 11025, 12916, 1974, 84, 1, 147456, 52480, 4368, 120, 1, 893025, 1057221, 172810, 8778, 165, 1, 14745600, 5395456, 489280, 16368, 220, 1, 108056025, 128816766, 21967231, 1234948, 28743
Offset: 1

Views

Author

Karol A. Penson, Feb 08 2004

Keywords

Comments

Row sums are equal to A006228(n). This is sequence A121408 without the intertwining zeros. - Emeric Deutsch, Jul 28 2006
This number triangle corresponds to the coefficients of the polynomial of the denominator of Fourier cosine coefficients for functions of the form sin(x)^(2*k) for integer n. For example (k=5), evaluating Integral_{x=-Pi..Pi} cos(n*x)*sin(x)^10 dx, we have -7257600*sin(n*Pi)/(-14745600*n + 5395456*n^3 - 489280*n^5 + 16368*n^7 - 220*n^9 + n^11); note the sequence of the coefficients of the polynomial of the denominator: -14745600, 5395456, -489280, 16368, -220, 1. - John M. Campbell, May 28 2011

Examples

			Triangle starts:
    1;
    1;
    1,   1;
    4,   1;
    9,  10,   1;
   64,  20,   1;
  225, 259,  35,   1;
		

Crossrefs

Cf. A006228.
Cf. A121408.

Programs

  • Maple
    G:=cosh(sqrt(y)*arcsin(x))+sqrt(y)*sinh(sqrt(y)*arcsin(x))-1: Gser:=simplify(series(G,x=0,15)): for n from 1 to 13 do P[n]:=sort(expand(n!*coeff(Gser,x,n))) od: for n from 1 to 13 do seq(coeff(P[n],y,k),k=1..ceil(n/2)) od; # yields sequence in triangular form # Emeric Deutsch, Jul 28 2006
  • Mathematica
    m = 14; (* number of rows *)
    T = Rest /@ Rest[CoefficientList[#, y]& /@ (CoefficientList[Cosh[Sqrt[y]* ArcSin[x]] + Sqrt[y]*Sinh[Sqrt[y]*ArcSin[x]] - 1  + O[x]^(m + 1), x]* Range[0, m]! // Simplify[#, y > 0]&)];
    Flatten[T] (* Jean-François Alcover, Sep 27 2021 *)

Formula

E.g.f.: cosh(sqrt(y)*arcsin(x))+sqrt(y)*sinh(sqrt(y)*arcsin(x))-1.

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A166741 E.g.f.: exp(2*arcsin(x)).

Original entry on oeis.org

1, 2, 4, 10, 32, 130, 640, 3770, 25600, 199810, 1740800, 16983850, 181043200, 2122981250, 26794393600, 367275756250, 5358878720000, 84106148181250, 1393308467200000, 24643101417106250, 457005177241600000
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 21 2009

Keywords

Comments

exp(2*arcsin(1)) is Aleksandr Gelfond's constant.

Crossrefs

Programs

  • Maple
    seq(simplify(2^(n-1) * (cosh(Pi)*(1-(-1)^n) + sinh(Pi)*(1+(-1)^n)) * GAMMA((1/2)*n-I)*GAMMA((1/2)*n+I) / Pi), n=0..20); # Vaclav Kotesovec, Nov 06 2014
  • Mathematica
    CoefficientList[Series[E^(2*ArcSin[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
    FullSimplify[Table[2^(n-1) * (E^(Pi)-(-1)^n*E^(-Pi)) * Gamma[n/2-I] * Gamma[n/2+I] / Pi,{n,0,20}]] (* Vaclav Kotesovec, Nov 06 2014 *)
  • PARI
    for (n=0,25,print(polcoeff(exp(2*asin(x)),n)*n!,","))

Formula

a(n) ~ 2 * n^(n-1) * (exp(Pi) - (-1)^n/exp(Pi)) / exp(n). - Vaclav Kotesovec, Aug 04 2014
From Vaclav Kotesovec, Nov 06 2014: (Start)
a(n) = (n^2 - 4*n + 8)*a(n-2).
a(n) = 2^(n-1) * (exp(Pi)-(-1)^n*exp(-Pi)) * GAMMA(n/2-I) * GAMMA(n/2+I) / Pi.
(End)

A259647 Expansion of exp(x*arcsin(x)) (even powers only).

Original entry on oeis.org

1, 2, 16, 294, 10424, 635130, 60535212, 8378845734, 1591416365520, 397329777218034, 126160335768212820, 49635257475383554590, 23694522124288261524984, 13490127107426613875639850, 9029074877857980800375629500, 7018229497764789751949369835030
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 02 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=20; Table[(CoefficientList[Series[E^(x*ArcSin[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}]

Formula

a(n) ~ (2*n)! * exp(Pi/2) / (2*sqrt(Pi)*n^(3/2)).
Showing 1-10 of 16 results. Next