cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A006228 Expansion of e.g.f. exp(arcsin(x)).

Original entry on oeis.org

1, 1, 1, 2, 5, 20, 85, 520, 3145, 26000, 204425, 2132000, 20646925, 260104000, 2993804125, 44217680000, 589779412625, 9993195680000, 151573309044625, 2898026747200000, 49261325439503125, 1049085682486400000, 19753791501240753125, 463695871658988800000
Offset: 0

Views

Author

Keywords

References

  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are expansions of sin(arcsinh(x)) and cos(arcsinh(x)).
Bisections are A101927 and A101928.
Row sums of A385343.
Cf. A002019.
Cf. A166741, A166748. - Jaume Oliver Lafont, Oct 24 2009

Programs

  • Maple
    a:= n-> n!*coeff(series(exp(arcsin(x)), x, n+1), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 17 2018
  • Mathematica
    Distribute[ CoefficientList[ Series[ E^ArcSin[x], {x, 0, 21}], x] * Table[ n!, {n, 0, 21}]] (* Robert G. Wilson v, Feb 10 2004 *)
    With[{nn=30},CoefficientList[Series[Exp[ArcSin[x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Feb 26 2013 *)
    Table[FullSimplify[2^(n-2) * (Exp[Pi/2]-(-1)^n*Exp[-Pi/2]) * Gamma[(n-I)/2] * Gamma[(n+I)/2] / Pi], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2014 *)
  • Maxima
    a(n):=(n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2))*(-1)^(k-j),j,1,k))*binomial(k+n-1,n-1),k,1,n-m))/(m-1)!,m,1,n); /* Vladimir Kruchinin, Sep 12 2010 */

Formula

i even: a_i = Product_{j=1..i/2-1} 1 + 4j^2, i odd: a_i = Product_{j=1..(i-1)/2} 2 + 4j(j-1). - Cris Moore (moore(AT)santafe.edu), Jan 31 2001
a(0)=1, a(1)=1, a(n) = (1+(n-2)^2)*a(n-2) for n >= 2. Jaume Oliver Lafont, Oct 24 2009
a(n) = (n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(C(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*C(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!, i=0..floor(j/2))*(-1)^(k-j), j=1..k))*C(k+n-1,n-1), k=1..n-m))/(m-1)!, m=1..n), n>0. - Vladimir Kruchinin, Sep 12 2010
E.g.f.: exp(arcsin(x))=1+2z/(H(0)-z); H(k)=4k+2+z^2*(4k^2+8k+5)/H(k+1), where z=x/((1-x^2)^1/2); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2011
a(n) ~ (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 23 2013
a(n) = 2^(n-2) * (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * GAMMA((n-I)/2) * GAMMA((n+I)/2) / Pi. - Vaclav Kotesovec, Nov 06 2014

Extensions

More terms from Christian G. Bower

A296675 Expansion of e.g.f. 1/(1 - arcsinh(x)).

Original entry on oeis.org

1, 1, 2, 5, 16, 69, 368, 2169, 14208, 109929, 970752, 8995821, 88341504, 988161069, 12276025344, 154843019169, 2009594658816, 29484826539345, 476778061430784, 7588488203093205, 121001549512310784, 2205431202369899925, 44538441694414110720, 852615914764223422665
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2017

Keywords

Comments

a(48) is negative. - Vaclav Kotesovec, Jan 26 2020

Examples

			1/(1 - arcsinh(x)) = 1 + x/1! + 2*x^2/2! + 5*x^3/3! + 16*x^4/4! + 69*x^5/5! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(1/(1-arcsinh(x)),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[1/(1 - ArcSinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 23; CoefficientList[Series[1/(1 - Log[x + Sqrt[1 + x^2]]), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    x='x+O('x^99); Vec(serlaplace(1/(1-log(x+sqrt(1+x^2))))) \\ Altug Alkan, Dec 18 2017

Formula

E.g.f.: 1/(1 - log(x + sqrt(1 + x^2))).
a(n) ~ 8*((4 - Pi^2)*sin(Pi*n/2) - 4*Pi*cos(Pi*n/2)) * n^(n-1) / ((4 + Pi^2)^2 * exp(n)). - Vaclav Kotesovec, Dec 18 2017
a(n) = Sum_{k=0..n} k! * i^(n-k) * A385343(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 27 2025

A189780 Expansion of e.g.f. 1/(1 - arcsin(x)).

Original entry on oeis.org

1, 1, 2, 7, 32, 189, 1328, 11019, 104064, 1111641, 13166592, 172006671, 2448559104, 37814647701, 628513744896, 11201565483219, 212867324706816, 4299987047933745, 91950128086450176, 2076040931023605015, 49332990241672003584, 1231115505653454828525, 32183083119025449861120
Offset: 0

Views

Author

Vladimir Kruchinin, May 02 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-ArcSin[t]), {t, 0, 100}], t] Table[
    n!, {n, 0, 100}] (* Emanuele Munarini, Nov 23 2015 *)
  • Maxima
    a(n):=(n-1)!*sum(m*(1+(-1)^(n-m))/2*sum((sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2)),j,1,k))*binomial(k+n-1,n-1),k,1,n-m),m,1,n-1)+n!;
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-asin(x)))) \\ Seiichi Manyama, Jun 26 2025

Formula

a(n)= (n-1)!*sum(m=1..n-1, m*(1+(-1)^(n-m))/2*sum(k=1..n-m (sum(j=1..k, binomial(k,j)*2^(1-j)*sum(i=0..floor(j/2), (-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!)))*binomial(k+n-1,n-1)))+n!, n>0, a(0)=1.
a(n) ~ cos(1) * n! / (sin(1))^(n+1). - Vaclav Kotesovec, Nov 06 2014
a(n) = Sum_{k=0..n} k! * A385343(n,k). - Seiichi Manyama, Jun 26 2025

Extensions

More terms from Seiichi Manyama, Jun 26 2025

A385369 Expansion of e.g.f. x + sqrt(x^2 + 1).

Original entry on oeis.org

1, 1, 1, 0, -3, 0, 45, 0, -1575, 0, 99225, 0, -9823275, 0, 1404728325, 0, -273922023375, 0, 69850115960625, 0, -22561587455281875, 0, 9002073394657468125, 0, -4348001449619557104375, 0, 2500100833531245335015625, 0, -1687568062633590601135546875, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(x+sqrt(x^2+1)))

Formula

E.g.f.: exp(arcsinh(x)).
E.g.f. A(x) satisfies A(x) = 1/A(-x).
a(n) = Sum_{k=0..n} i^(n-k) * A385343(n,k), where i is the imaginary unit.
a(n) = A177698(n-1) for n > 1.
a(2*n+1) = 0 for n > 0.
a(n) = 2^n * n! * binomial((n+1)/2,n)/(n+1).

A385346 Expansion of e.g.f. 1/(1 - 2 * arcsin(x)).

Original entry on oeis.org

1, 2, 8, 50, 416, 4338, 54272, 792402, 13221888, 248206818, 5177131008, 118784695218, 2973171646464, 80619877999698, 2354230063005696, 73657841729314002, 2458203242895507456, 87165684035402711490, 3272629788196529504256, 129696816160868956695090
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-2*asin(x))))

Formula

a(n) = Sum_{k=0..n} 2^k * k! * A385343(n,k).
a(n) ~ sqrt(Pi/2) * cos(1/2) * n^(n + 1/2) / (exp(n) * sin(1/2)^(n+1)). - Vaclav Kotesovec, Jun 27 2025

A385347 Expansion of e.g.f. 1/(1 - 3 * arcsin(x)).

Original entry on oeis.org

1, 3, 18, 165, 2016, 30807, 564912, 12085713, 295498368, 8128142667, 248419104768, 8351633349117, 306299582106624, 12169801665625887, 520721224401217536, 23872081186754865513, 1167357853571179216896, 60652216264444277244435, 3336667444310413833732096
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*asin(x))))

Formula

a(n) = Sum_{k=0..n} 3^k * k! * A385343(n,k).
a(n) ~ sqrt(2*Pi) * cos(1/3) * n^(n + 1/2) / (3 * exp(n) * sin(1/3)^(n+1)). - Vaclav Kotesovec, Jun 27 2025

A385371 Expansion of e.g.f. 1/(1 - 2 * arcsinh(x))^(1/2).

Original entry on oeis.org

1, 1, 3, 14, 93, 804, 8487, 105720, 1520313, 24790800, 451823403, 9101380320, 200808312405, 4816068148800, 124749498365775, 3470782979053440, 103225781141381745, 3268196553960218880, 109745731806193831635, 3895876984699452280320
Offset: 0

Views

Author

Seiichi Manyama, Jun 27 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-2*asinh(x))^(1/2)))

Formula

E.g.f.: 1/(1 - 2 * log(x + sqrt(x^2 + 1)))^(1/2).
a(n) = Sum_{k=0..n} A001147(k) * i^(n-k) * A385343(n,k), where i is the imaginary unit.
a(n) ~ sqrt(1 + exp(1)) * 2^n * n^n / ((exp(1) - 1)^(n + 1/2) * exp(n/2)). - Vaclav Kotesovec, Jun 27 2025

A385372 Expansion of e.g.f. 1/(1 - 3 * arcsinh(x))^(1/3).

Original entry on oeis.org

1, 1, 4, 27, 264, 3369, 52896, 986187, 21293184, 522491697, 14359993344, 436964488443, 14583637923840, 529683272760537, 20798444046458880, 877927319167721067, 39644175780617748480, 1906959640776766940385, 97344936393086594580480, 5255894631271228490720475
Offset: 0

Views

Author

Seiichi Manyama, Jun 27 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*asinh(x))^(1/3)))

Formula

E.g.f.: 1/(1 - 3 * log(x + sqrt(x^2 + 1)))^(1/3).
a(n) = Sum_{k=0..n} A007559(k) * i^(n-k) * A385343(n,k), where i is the imaginary unit.
a(n) ~ sqrt(Pi) * (exp(2/3) + 1)^(1/3) * 2^(n + 1/2) * n^(n - 1/6) / (3^(1/3) * Gamma(1/3) * exp(2*n/3) * (exp(2/3) - 1)^(n + 1/3)). - Vaclav Kotesovec, Jun 27 2025

A385424 Expansion of e.g.f. exp( -LambertW(-arcsin(x)) ).

Original entry on oeis.org

1, 1, 3, 17, 137, 1465, 19499, 311873, 5829073, 124796081, 3012319315, 80960234577, 2398138520409, 77630951407529, 2726829925494011, 103300796618253825, 4198494172961579169, 182239547736082960737, 8414068749731088539299, 411754575622058760824593
Offset: 0

Views

Author

Seiichi Manyama, Jun 28 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-asin(x)))))

Formula

E.g.f. A(x) satisfies A(x) = exp( arcsin(x) * A(x) ).
a(n) = Sum_{k=0..n} (k+1)^(k-1) * A385343(n,k).
a(n) ~ n^(n-1) / (sqrt(cos(exp(-1))) * sin(exp(-1))^(n - 1/2) * exp(n - 3/2)). - Vaclav Kotesovec, Jun 28 2025

A385425 Expansion of e.g.f. exp( -LambertW(-arcsinh(x)) ).

Original entry on oeis.org

1, 1, 3, 15, 113, 1145, 14499, 220703, 3932865, 80342577, 1851286755, 47510525007, 1344106404849, 41562628517865, 1394711974335939, 50480840239135455, 1960392617938419969, 81309789407316485217, 3587373056789171999811, 167762667997938465311247
Offset: 0

Views

Author

Seiichi Manyama, Jun 28 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-asinh(x)))))

Formula

E.g.f. A(x) satisfies A(x) = exp( arcsinh(x) * A(x) ).
E.g.f. A(x) satisfies A(x) = ( x + sqrt(x^2 + 1) )^A(x).
a(n) = Sum_{k=0..n} (k+1)^(k-1) * i^(n-k) * A385343(n,k), where i is the imaginary unit.
From Vaclav Kotesovec, Jun 28 2025: (Start)
a(n) ~ 2^n * exp((exp(-1) - 1)*n + 3/2) * n^(n-1) / (sqrt(1 + exp(2*exp(-1))) * (exp(2*exp(-1)) - 1)^(n - 1/2)).
Equivalently, a(n) ~ n^(n-1) / (sqrt(cosh(exp(-1))) * sinh(exp(-1))^(n - 1/2) * exp(n - 3/2)). (End)
Showing 1-10 of 26 results. Next