A006228
Expansion of e.g.f. exp(arcsin(x)).
Original entry on oeis.org
1, 1, 1, 2, 5, 20, 85, 520, 3145, 26000, 204425, 2132000, 20646925, 260104000, 2993804125, 44217680000, 589779412625, 9993195680000, 151573309044625, 2898026747200000, 49261325439503125, 1049085682486400000, 19753791501240753125, 463695871658988800000
Offset: 0
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Bisections are expansions of sin(arcsinh(x)) and cos(arcsinh(x)).
-
a:= n-> n!*coeff(series(exp(arcsin(x)), x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 17 2018
-
Distribute[ CoefficientList[ Series[ E^ArcSin[x], {x, 0, 21}], x] * Table[ n!, {n, 0, 21}]] (* Robert G. Wilson v, Feb 10 2004 *)
With[{nn=30},CoefficientList[Series[Exp[ArcSin[x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Feb 26 2013 *)
Table[FullSimplify[2^(n-2) * (Exp[Pi/2]-(-1)^n*Exp[-Pi/2]) * Gamma[(n-I)/2] * Gamma[(n+I)/2] / Pi], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2014 *)
-
a(n):=(n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2))*(-1)^(k-j),j,1,k))*binomial(k+n-1,n-1),k,1,n-m))/(m-1)!,m,1,n); /* Vladimir Kruchinin, Sep 12 2010 */
A296675
Expansion of e.g.f. 1/(1 - arcsinh(x)).
Original entry on oeis.org
1, 1, 2, 5, 16, 69, 368, 2169, 14208, 109929, 970752, 8995821, 88341504, 988161069, 12276025344, 154843019169, 2009594658816, 29484826539345, 476778061430784, 7588488203093205, 121001549512310784, 2205431202369899925, 44538441694414110720, 852615914764223422665
Offset: 0
1/(1 - arcsinh(x)) = 1 + x/1! + 2*x^2/2! + 5*x^3/3! + 16*x^4/4! + 69*x^5/5! + ...
-
a:=series(1/(1-arcsinh(x)),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
-
nmax = 23; CoefficientList[Series[1/(1 - ArcSinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[1/(1 - Log[x + Sqrt[1 + x^2]]), {x, 0, nmax}], x] Range[0, nmax]!
-
x='x+O('x^99); Vec(serlaplace(1/(1-log(x+sqrt(1+x^2))))) \\ Altug Alkan, Dec 18 2017
A189780
Expansion of e.g.f. 1/(1 - arcsin(x)).
Original entry on oeis.org
1, 1, 2, 7, 32, 189, 1328, 11019, 104064, 1111641, 13166592, 172006671, 2448559104, 37814647701, 628513744896, 11201565483219, 212867324706816, 4299987047933745, 91950128086450176, 2076040931023605015, 49332990241672003584, 1231115505653454828525, 32183083119025449861120
Offset: 0
-
CoefficientList[Series[1/(1-ArcSin[t]), {t, 0, 100}], t] Table[
n!, {n, 0, 100}] (* Emanuele Munarini, Nov 23 2015 *)
-
a(n):=(n-1)!*sum(m*(1+(-1)^(n-m))/2*sum((sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2)),j,1,k))*binomial(k+n-1,n-1),k,1,n-m),m,1,n-1)+n!;
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-asin(x)))) \\ Seiichi Manyama, Jun 26 2025
A385369
Expansion of e.g.f. x + sqrt(x^2 + 1).
Original entry on oeis.org
1, 1, 1, 0, -3, 0, 45, 0, -1575, 0, 99225, 0, -9823275, 0, 1404728325, 0, -273922023375, 0, 69850115960625, 0, -22561587455281875, 0, 9002073394657468125, 0, -4348001449619557104375, 0, 2500100833531245335015625, 0, -1687568062633590601135546875, 0
Offset: 0
A385346
Expansion of e.g.f. 1/(1 - 2 * arcsin(x)).
Original entry on oeis.org
1, 2, 8, 50, 416, 4338, 54272, 792402, 13221888, 248206818, 5177131008, 118784695218, 2973171646464, 80619877999698, 2354230063005696, 73657841729314002, 2458203242895507456, 87165684035402711490, 3272629788196529504256, 129696816160868956695090
Offset: 0
A385347
Expansion of e.g.f. 1/(1 - 3 * arcsin(x)).
Original entry on oeis.org
1, 3, 18, 165, 2016, 30807, 564912, 12085713, 295498368, 8128142667, 248419104768, 8351633349117, 306299582106624, 12169801665625887, 520721224401217536, 23872081186754865513, 1167357853571179216896, 60652216264444277244435, 3336667444310413833732096
Offset: 0
A385371
Expansion of e.g.f. 1/(1 - 2 * arcsinh(x))^(1/2).
Original entry on oeis.org
1, 1, 3, 14, 93, 804, 8487, 105720, 1520313, 24790800, 451823403, 9101380320, 200808312405, 4816068148800, 124749498365775, 3470782979053440, 103225781141381745, 3268196553960218880, 109745731806193831635, 3895876984699452280320
Offset: 0
A385372
Expansion of e.g.f. 1/(1 - 3 * arcsinh(x))^(1/3).
Original entry on oeis.org
1, 1, 4, 27, 264, 3369, 52896, 986187, 21293184, 522491697, 14359993344, 436964488443, 14583637923840, 529683272760537, 20798444046458880, 877927319167721067, 39644175780617748480, 1906959640776766940385, 97344936393086594580480, 5255894631271228490720475
Offset: 0
A385424
Expansion of e.g.f. exp( -LambertW(-arcsin(x)) ).
Original entry on oeis.org
1, 1, 3, 17, 137, 1465, 19499, 311873, 5829073, 124796081, 3012319315, 80960234577, 2398138520409, 77630951407529, 2726829925494011, 103300796618253825, 4198494172961579169, 182239547736082960737, 8414068749731088539299, 411754575622058760824593
Offset: 0
A385425
Expansion of e.g.f. exp( -LambertW(-arcsinh(x)) ).
Original entry on oeis.org
1, 1, 3, 15, 113, 1145, 14499, 220703, 3932865, 80342577, 1851286755, 47510525007, 1344106404849, 41562628517865, 1394711974335939, 50480840239135455, 1960392617938419969, 81309789407316485217, 3587373056789171999811, 167762667997938465311247
Offset: 0
Showing 1-10 of 26 results.
Comments