cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A189780 Expansion of e.g.f. 1/(1 - arcsin(x)).

Original entry on oeis.org

1, 1, 2, 7, 32, 189, 1328, 11019, 104064, 1111641, 13166592, 172006671, 2448559104, 37814647701, 628513744896, 11201565483219, 212867324706816, 4299987047933745, 91950128086450176, 2076040931023605015, 49332990241672003584, 1231115505653454828525, 32183083119025449861120
Offset: 0

Views

Author

Vladimir Kruchinin, May 02 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-ArcSin[t]), {t, 0, 100}], t] Table[
    n!, {n, 0, 100}] (* Emanuele Munarini, Nov 23 2015 *)
  • Maxima
    a(n):=(n-1)!*sum(m*(1+(-1)^(n-m))/2*sum((sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2)),j,1,k))*binomial(k+n-1,n-1),k,1,n-m),m,1,n-1)+n!;
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-asin(x)))) \\ Seiichi Manyama, Jun 26 2025

Formula

a(n)= (n-1)!*sum(m=1..n-1, m*(1+(-1)^(n-m))/2*sum(k=1..n-m (sum(j=1..k, binomial(k,j)*2^(1-j)*sum(i=0..floor(j/2), (-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!)))*binomial(k+n-1,n-1)))+n!, n>0, a(0)=1.
a(n) ~ cos(1) * n! / (sin(1))^(n+1). - Vaclav Kotesovec, Nov 06 2014
a(n) = Sum_{k=0..n} k! * A385343(n,k). - Seiichi Manyama, Jun 26 2025

Extensions

More terms from Seiichi Manyama, Jun 26 2025

A385347 Expansion of e.g.f. 1/(1 - 3 * arcsin(x)).

Original entry on oeis.org

1, 3, 18, 165, 2016, 30807, 564912, 12085713, 295498368, 8128142667, 248419104768, 8351633349117, 306299582106624, 12169801665625887, 520721224401217536, 23872081186754865513, 1167357853571179216896, 60652216264444277244435, 3336667444310413833732096
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*asin(x))))

Formula

a(n) = Sum_{k=0..n} 3^k * k! * A385343(n,k).
a(n) ~ sqrt(2*Pi) * cos(1/3) * n^(n + 1/2) / (3 * exp(n) * sin(1/3)^(n+1)). - Vaclav Kotesovec, Jun 27 2025

A385367 Expansion of e.g.f. 1/(1 - 2 * arcsinh(x)).

Original entry on oeis.org

1, 2, 8, 46, 352, 3378, 38912, 522702, 8024064, 138586722, 2659565568, 56141737518, 1292851544064, 32253357421842, 866534937329664, 24943658876605902, 765883864848531456, 24985882009464388290, 863077992845681885184, 31469256501815056673070
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1-2ArcSinh[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 14 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-2*asinh(x))))

Formula

E.g.f.: 1/(1 - 2 * log(x + sqrt(x^2 + 1))).
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A385371.
a(n) = Sum_{k=0..n} 2^k * k! * i^(n-k) * A385343(n,k), where i is the imaginary unit.
a(n) ~ sqrt(Pi) * (1 + exp(1)) * 2^(n - 1/2) * n^(n + 1/2) / ((exp(1) - 1)^(n+1) * exp(n/2)). - Vaclav Kotesovec, Jun 27 2025

A385376 Expansion of e.g.f. 1/(1 - 2 * arcsin(x))^(1/2).

Original entry on oeis.org

1, 1, 3, 16, 117, 1104, 12687, 172320, 2698377, 47880960, 949330203, 20801387520, 499149710205, 13018307696640, 366673138800615, 11092295404707840, 358685609335654545, 12346621534211604480, 450741642786156589875, 17395372731952677519360, 707614393333663454022405
Offset: 0

Views

Author

Seiichi Manyama, Jun 27 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-2*asin(x))^(1/2)))

Formula

a(n) = Sum_{k=0..n} A001147(k) * A385343(n,k).
a(n) ~ sqrt(cos(1/2)) * n^n / (exp(n) * sin(1/2)^(n + 1/2)). - Vaclav Kotesovec, Jun 27 2025
Showing 1-4 of 4 results.