cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A189780 Expansion of e.g.f. 1/(1 - arcsin(x)).

Original entry on oeis.org

1, 1, 2, 7, 32, 189, 1328, 11019, 104064, 1111641, 13166592, 172006671, 2448559104, 37814647701, 628513744896, 11201565483219, 212867324706816, 4299987047933745, 91950128086450176, 2076040931023605015, 49332990241672003584, 1231115505653454828525, 32183083119025449861120
Offset: 0

Views

Author

Vladimir Kruchinin, May 02 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-ArcSin[t]), {t, 0, 100}], t] Table[
    n!, {n, 0, 100}] (* Emanuele Munarini, Nov 23 2015 *)
  • Maxima
    a(n):=(n-1)!*sum(m*(1+(-1)^(n-m))/2*sum((sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2)),j,1,k))*binomial(k+n-1,n-1),k,1,n-m),m,1,n-1)+n!;
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-asin(x)))) \\ Seiichi Manyama, Jun 26 2025

Formula

a(n)= (n-1)!*sum(m=1..n-1, m*(1+(-1)^(n-m))/2*sum(k=1..n-m (sum(j=1..k, binomial(k,j)*2^(1-j)*sum(i=0..floor(j/2), (-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!)))*binomial(k+n-1,n-1)))+n!, n>0, a(0)=1.
a(n) ~ cos(1) * n! / (sin(1))^(n+1). - Vaclav Kotesovec, Nov 06 2014
a(n) = Sum_{k=0..n} k! * A385343(n,k). - Seiichi Manyama, Jun 26 2025

Extensions

More terms from Seiichi Manyama, Jun 26 2025

A385346 Expansion of e.g.f. 1/(1 - 2 * arcsin(x)).

Original entry on oeis.org

1, 2, 8, 50, 416, 4338, 54272, 792402, 13221888, 248206818, 5177131008, 118784695218, 2973171646464, 80619877999698, 2354230063005696, 73657841729314002, 2458203242895507456, 87165684035402711490, 3272629788196529504256, 129696816160868956695090
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-2*asin(x))))

Formula

a(n) = Sum_{k=0..n} 2^k * k! * A385343(n,k).
a(n) ~ sqrt(Pi/2) * cos(1/2) * n^(n + 1/2) / (exp(n) * sin(1/2)^(n+1)). - Vaclav Kotesovec, Jun 27 2025

A385368 Expansion of e.g.f. 1/(1 - 3 * arcsinh(x)).

Original entry on oeis.org

1, 3, 18, 159, 1872, 27567, 487152, 10043163, 236628864, 6272181243, 184725577728, 5984502588567, 211503539764224, 8097842686320423, 333891770433767424, 14750451600690993363, 695078159385543376896, 34800934548420464971635, 1844895428525714717343744
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*asinh(x))))

Formula

E.g.f.: 1/(1 - 3 * log(x + sqrt(x^2 + 1))).
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A385372.
a(n) = Sum_{k=0..n} 3^k * k! * i^(n-k) * A385343(n,k), where i is the imaginary unit.
a(n) ~ sqrt(Pi) * (1 + exp(2/3)) * 2^(n + 1/2) * n^(n + 1/2) / (3 * (exp(2/3) - 1)^(n+1) * exp(2*n/3)). - Vaclav Kotesovec, Jun 27 2025

A385377 Expansion of e.g.f. 1/(1 - 3 * arcsin(x))^(1/3).

Original entry on oeis.org

1, 1, 4, 29, 296, 3929, 64096, 1241437, 27834496, 709117073, 20232018944, 639064971293, 22138797783040, 834595012185193, 34013250713804800, 1490126154034917917, 69836524615835156480, 3486395656135414573985, 184703404516197170544640, 10349751400296465164293405
Offset: 0

Views

Author

Seiichi Manyama, Jun 27 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*asin(x))^(1/3)))

Formula

a(n) = Sum_{k=0..n} A007559(k) * A385343(n,k).
a(n) ~ sqrt(2*Pi) * cos(1/3)^(1/3) * n^(n - 1/6) / (Gamma(1/3) * 3^(1/3) * exp(n) * sin(1/3)^(n + 1/3)). - Vaclav Kotesovec, Jun 27 2025
Showing 1-4 of 4 results.