Alexander Burstein has authored 10 sequences.
Original entry on oeis.org
1, 4, 16, 72, 352, 1816, 9728, 53584, 301568, 1726488, 10022912, 58864240, 349102080, 2087772784, 12576358400, 76237953440, 464736354304, 2847019090712, 17518413479936, 108224749140784, 670996707147776, 4173817417204944, 26040046909915136, 162905940337309792, 1021700454913933312
Offset: 0
-
A370276 := proc(n)
add( A138020(i)*A138020(n-i),i=0..n) ;
end proc:
seq(A370276(n),n=0..80) ; # R. J. Mathar, Sep 27 2024
-
CoefficientList[(InverseSeries[Series[x Sqrt[(1-2x)/(1+2x)],{x,0,25}]])^2/x^2,x]
A349562
Number of labeled rooted forests with 2-colored leaves.
Original entry on oeis.org
1, 2, 8, 56, 576, 7872, 134656, 2771456, 66744320, 1842237440, 57354338304, 1988721131520, 76015173369856, 3175757373243392, 143980934947930112, 7040807787705663488, 369414622819764928512, 20700889684976244621312, 1233951687316746828513280, 77963762014950356953333760
Offset: 0
a(2)=8 counts trees 0-1-2B, 0-1-2R, 0-2-1B, 0-2-1R, 1B-0-2B, 1B-0-2R, 1R-0-2B, 1R-0-2R (where B and R stand for colors Blue and Red).
-
CoefficientList[u/.AsymptoticSolve[u-E^(x(1+u))==0,u->1,{x,0,24}][[1]],x]Factorial/@Range[0,24]
nmax = 20; CoefficientList[Series[-LambertW[-x*Exp[x]]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 25 2021 *)
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k+1)^(k-1)*x^k/(1-(k+1)*x)^(k+1))) \\ Seiichi Manyama, Nov 26 2021
A349648
Expansion of g.f.: Catalan(x)/Catalan(-x).
Original entry on oeis.org
1, 2, 2, 8, 14, 64, 132, 640, 1430, 7168, 16796, 86016, 208012, 1081344, 2674440, 14057472, 35357670, 187432960, 477638700, 2549088256, 6564120420, 35223764992, 91482563640, 493132709888, 1289904147324, 6979724509184, 18367353072152, 99710350131200
Offset: 0
-
gf:= (c-> c(x)/c(-x))(x-> hypergeom([1/2, 1], [2], 4*x)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..35); # Alois P. Heinz, Nov 23 2021
-
CoefficientList[Series[(1-Sqrt[1-4x])/(Sqrt[1+4x]-1),{x,0,24}],x]
A347953
G.f.: A(x) = 1/C(-x*T(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108 and T(x) = 1 + x*T(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 2, 8, 35, 171, 882, 4744, 26286, 149045, 860596, 5042968, 29913676, 179270434, 1083794310, 6601817952, 40479778395, 249646876065, 1547539929810, 9637085582640, 60260786147261, 378212395786511, 2381767469829332, 15045137488662048, 95304451461770250
Offset: 0
-
cx := (1-sqrt(1-4*x))/2/x ;
tx := 2/sqrt(3*x)*sin( 1/3*arcsin(sqrt(27*x/4))) ;
gf := 1/subs(x=-x*tx^3,cx) ;
taylor(%,x=0,40) ;
gfun[seriestolist](%) ; # R. J. Mathar, Jul 20 2023
-
CoefficientList[y/.AsymptoticSolve[y-1-x(1-y+y^2)^3/y==0,y->1,{x,0,24}][[1]],x]
-
seq(n) = {Vec(1/subst((1 - sqrt(1 - 4*x + O(x^2*x^n))) / (2*x), x, -serreverse(x / (1+x)^3 + O(x*x^n))))} \\ Andrew Howroyd, Nov 22 2021
A348197
Composition of the g.f. of A086246 with itself.
Original entry on oeis.org
0, 1, 2, 4, 10, 28, 84, 264, 860, 2880, 9862, 34392, 121770, 436688, 1583146, 5793216, 21370806, 79391536, 296760222, 1115327844, 4212125662, 15976390684, 60833679424, 232452408632, 891060970152, 3425639505624, 13204738280326, 51024408662932, 197607503526934
Offset: 0
-
gf:= (f-> f(f(x)))(x->(1+x-sqrt(1-2*x-3*x^2))/2):
a:= n-> coeff(series(gf,x,n+1),x,n):
seq(a(n), n=0..40); # Alois P. Heinz, Oct 06 2021
-
f[x_] := (1 + x - Sqrt[1 - 2*x - 3*x^2])/2; a[n_] := SeriesCoefficient[f[f[x]], {x, 0, n}]; Array[a, 25, 0] (* Amiram Eldar, Oct 06 2021 *)
-
f(x) = (1+x-sqrt(1-2*x-3*x^2))/2;
my(x='x+O('x^30)); concat(0, Vec(f(f(x)))) \\ Michel Marcus, Oct 06 2021
A348189
Pseudo-involutory Riordan companion of 1 + 2*x*M(x), where M(x) is the g.f. of A001006.
Original entry on oeis.org
1, 0, 0, 2, 0, 6, 8, 24, 60, 148, 396, 1026, 2744, 7350, 19872, 54102, 148104, 407682, 1127328, 3130542, 8726256, 24407634, 68482776, 192698124, 543642476, 1537443024, 4357677516, 12376868254, 35221087656, 100409367690, 286730523104, 820078634232, 2348966799132
Offset: 1
-
a[n_] := SeriesCoefficient[(1 - Sqrt[1-2*x-3*x^2])/(x * (2 + x - Sqrt[1-2*x-3*x^2])), {x, 0, n}]; Array[a, 33, 0] (* Amiram Eldar, Oct 06 2021 *)
-
my(x='x+O('x^35)); Vec((1-sqrt(1-2*x-3*x^2))/(x*(2+x-sqrt(1-2*x-3*x^2)))) \\ Michel Marcus, Oct 06 2021
A344623
Pseudo-involution companion for the Fibonacci generating function.
Original entry on oeis.org
1, 3, 9, 32, 126, 538, 2429, 11412, 55201, 272993, 1373784, 7011297, 36201841, 188761743, 992491049, 5256244537, 28013213196, 150128293038, 808543940999, 4373798584407, 23753913152691, 129469596050953, 707969244301884, 3882857013894482, 21353585584100401
Offset: 0
A343795
Number of Dumont permutations of the fourth kind of length 2n avoiding the pattern 312.
Original entry on oeis.org
1, 1, 3, 10, 39, 174, 872, 4805, 28474, 178099, 1160173, 7803860, 53924841, 381640934, 2761331130, 20400560942, 153738854242, 1180631743440, 9229687049249, 73372263658451, 592476077260123, 4854377724124700, 40315729803287046, 339065862485375334, 2885324166565733641
Offset: 0
For n=2, a(2)=3 counts the permutations 1234, 1342, 1432.
- O. Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, Ph.D. thesis, Howard University, 2019.
-
seq(n)={my(h=sqrt(1-16*x + O(x*x^n)), F=sqrt((1-h)/(8*x)), G=(1-sqrt((1+h)/2))/(2*x), A=O(1)); forstep(k=n\3, 0, -1, my(f=Pol(F + O(x*x^k))); A = f/((1 - x*Pol(G + O(x^k)))^2 - x*f/(1 - x*Pol(G + O(x*x^k)) - x*f^2/(1 - x*A))) ); Vec(A + O(x*x^n))} \\ Andrew Howroyd, Apr 29 2021
A308750
Number of Dumont permutations of the first kind of length 2n avoiding pattern 2143 (or pattern 3421).
Original entry on oeis.org
1, 1, 2, 7, 36, 239, 1892, 17015, 168503, 1799272, 20409644
Offset: 0
For n=3, the 7 Dumont permutations of the first kind avoiding pattern 2143 are 356421, 364215, 435621, 563421, 564213, 634215, 642135, and the 7 Dumont permutations of the first kind avoiding pattern 3421 are 214365, 216435, 421365, 421563, 421635, 621435, 642135.
- O. Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, Ph.D. thesis, Howard University, 2019.
A033820
Triangle read by rows: T(k,j) = ((2*j+1)/(k+1))*binomial(2*j,j)*binomial(2*k-2*j,k-j).
Original entry on oeis.org
1, 1, 3, 2, 4, 10, 5, 9, 15, 35, 14, 24, 36, 56, 126, 42, 70, 100, 140, 210, 462, 132, 216, 300, 400, 540, 792, 1716, 429, 693, 945, 1225, 1575, 2079, 3003, 6435, 1430, 2288, 3080, 3920, 4900, 6160, 8008, 11440, 24310, 4862, 7722, 10296, 12936, 15876, 19404
Offset: 0
{1},
{1, 3},
{2, 4, 10},
{5, 9, 15, 35},
{14, 24, 36, 56, 126},
{42, 70, 100, 140, 210, 462},
{132, 216, 300, 400, 540, 792, 1716},
...
- Alexander Burstein, Enumeration of words with forbidden patterns, Ph.D. thesis, University of Pennsylvania, 1998.
- Ira Gessel, Super ballot numbers, J. Symbolic Computation 14 (1992), 179-194.
- Walter Shur, Two Game-Set Inequalities, J. Integer Seqs., Vol. 6, 2003.
Essentially a reflected version of
A078817.
Comments