cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Karol A. Penson

Karol A. Penson's wiki page.

Karol A. Penson has authored 210 sequences. Here are the ten most recent ones:

A386517 a(n) = 60*binomial(3*n,n)/(n+2).

Original entry on oeis.org

30, 60, 225, 1008, 4950, 25740, 139230, 775200, 4412826, 25564500, 150225075, 893246400, 5364333000, 32489701776, 198225859050, 1217179149120, 7516163045490, 46645481326500, 290779045735815, 1819954198062000, 11432303197651350, 72050701049642700, 455457919954401000
Offset: 0

Author

Karol A. Penson, Aug 25 2025

Keywords

Crossrefs

Cf. A005809.

Programs

  • Mathematica
    A386517[n_] := 60*Binomial[3*n, n]/(n + 2); Array[A386517, 25, 0] (* Paolo Xausa, Aug 28 2025 *)
  • PARI
    a(n) = 60*binomial(3*n,n)/(n+2);
    vector(23,n,a(n-1)) \\ Joerg Arndt, Aug 26 2025

Formula

a(n) = 60*A005809(n)/(n+2).
O.g.f.: (-i*(x + 1)*x*sqrt(3)*t - 4*sqrt(x) + 15*x^(3/2) + 81*x^(5/2))*(4*t - 12*i*sqrt(3)*sqrt(x))^(1/3) + (i*(x + 1)*x*sqrt(3)*t - 4*sqrt(x) + 15*x^(3/2) + 81*x^(5/2))*(4*t + 12*i*sqrt(3)*sqrt(x))^(1/3) + 8*t*sqrt(x))/(4*t*x^(5/2)), for t = sqrt(4-27*x), and i = sqrt(-1) the imaginary unit.
O.g.f.: 30*hypergeom([1/3, 2/3, 2], [1/2, 3], 27*x/4), that, denoted by h(x),satisfies
-270 - 540*x + 675*x^2 + 1728*x^3 + 9*(1 + 10*x^2 + 20*x^3)*h(x) - 6*x^2*h(x)^2 + x^4*h(x)^3 = 0.
E.g.f.: 30*hypergeom([1/3, 2/3, 2], [1/2, 1, 3], 27*x/4).
a(n) = Integral_{x=0..27/4} x^n*W(x)*dx, where, for S = sqrt(27 - 4*x),
W(x) = ((-6^(1/3)*(9 + sqrt(3)*S)^(2/3)*(sqrt(3) - 3*S) + 6*3^(1/6)*(1 + sqrt(3)*S)*x^(1/3) + 6^(1/3)*(9 + sqrt(3)*S)^(2/3)*(-sqrt(3) + S)*x + 2*3^(1/6)*(3 + sqrt(3)*S)*x^(4/3))*2^(1/3))/(8*Pi*(9 + sqrt(3)*S)^(1/3)*x^(2/3)).
W(x) is a positive function on x = (0,27/4), is singular at x=0, and tends to zero at x = 27/4. Thus a(n) is a positive definite sequence. This representation is unique as W(x) is the solution of the Hausdorff moment problem.

A384957 Expansion of g.f.: exp(Sum_{n>=1} A295433(n)*x^n/n).

Original entry on oeis.org

1, 990, 2206149, 6450139410, 21553605027306, 77957908218716988, 297118041166459732781, 1175248212459867447863562, 4779368947089383238327733950, 19858241947988743766121587718308, 83936671517628352407663509802203682, 359778601391313651280693986124971038388, 1560159110515342136997114532804454280500084
Offset: 0

Author

Karol A. Penson, Jun 13 2025

Keywords

Programs

  • PARI
    seq(n)=Vec(exp(sum(n=1, n, (12*n)!*n!*x^n/((8*n)!*(3*n)!*(2*n)!)/n, O(x*x^n)) )) \\ Andrew Howroyd, Jun 13 2025

Formula

G.f.: exp(Sum_{n>=1} (12*n)!*n!*x^n/((8*n)!*(3*n)!*(2*n)!)/n).

A384668 a(n) = 12 * (5*n+2)! / ((3*n+1)! * (2*n+2)!).

Original entry on oeis.org

12, 105, 1584, 29172, 596904, 13037895, 297748800, 7023149820, 169774618104, 4183919862474, 104722807600320, 2654939113240050, 68033328627480804, 1759318006963275528, 45853277234783179392, 1203249937243079847660, 31764232607604306053400, 842982010030680328418706
Offset: 0

Author

Karol A. Penson, Jun 06 2025

Keywords

Crossrefs

Programs

Formula

O.g.f.: 12*hypergeom([3/5, 4/5, 1, 6/5, 7/5], [2/3, 4/3, 3/2, 2], (3125*x)/108).
E.g.f.: 12*hypergeom([3/5, 4/5, 6/5, 7/5], [2/3, 4/3, 3/2, 2], (3125*x)/108).
O.g.f. denoted by h(x), satisfies the algebraic equation of order 10:
1889568 - 6141096*x + 10628820*x^2 - 59049*x^3 + (-2834352*x^3 + 4861701*x^2 - 2834352*x - 157464)*h(x) + 13122*x*(14*x^3 - 77*x^2 + 124*x + 30)*h(x)^2 - 4374*x^2*(14*x^2 + 94*x + 99)*h(x)^3 + 729*x^3*(50*x^2 + 32*x + 377)*h(x)^4 - 243*x^4*(11*x^2 - 40*x + 456)*h(x)^5 - 243*x^5*(8*x - 121)*h(x)^6 + 54*x^6*(2*x - 95)*h(x)^7 + 567*x^7*h(x)^8 - 36*x^8*h(x)^9 + x^9*h(x)^10 = 0.
a(n) = Integral_{x=0..3125/108} x^n*W(x)*dx, where W(x) = W1(x)+W2(x)+W3(x)+W4(x), with
W1(x) = (3*sqrt(5)*csc(Pi/5)*sin(Pi/10)*hypergeom([-2/5, 1/10, 4/15, 14/15], [1/5, 2/5, 4/5], (108*x)/3125))/(2*Pi*x^(2/5)),
W2(x) = (6*sqrt(5)*csc((2*Pi)/5)*sin((3*Pi)/10)*hypergeom([-1/5, 3/10, 7/15, 17/15], [2/5, 3/5, 6/5], (108*x)/3125))/(5*Pi*x^(1/5)),
W3(x) = -(24*sqrt(5)*csc((2*Pi)/5)*sin((3*Pi)/10)*x^(1/5)*hypergeom([1/5, 7/10, 13/15, 23/15], [4/5, 7/5, 8/5], (108*x)/3125))/(125*Pi), and
W4(x) = -(33*sqrt(5)*csc(Pi/5)*sin(Pi/10)*x^(2/5)*hypergeom([2/5, 9/10, 16/15, 26/15], [6/5, 8/5, 9/5], (108*x)/3125))/(1250*Pi).
This integral representation is unique as it is the solution of the Hausdorff power moment of the function W(x). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 3125/108. Therefore a(n) is a positive definite sequence.

A383796 Expansion of g.f.: exp(Sum_{n>=1} A295432(n)*x^n/n).

Original entry on oeis.org

1, 462, 396453, 425295010, 511915968714, 661059663660060, 895093835464198893, 1254056426977089876570, 1802794259810040618367902, 2644298823194748929633091780, 3941742074897786728895080586082, 5954164159064906497558129244865108, 9094122817144126105637193154022530612
Offset: 0

Author

Karol A. Penson, Jun 11 2025

Keywords

Crossrefs

Programs

  • PARI
    seq(n)=Vec(exp(sum(n=1, n, (12*n)!*(3*n)!*(2*n)!*x^n/(n*((6*n)!)^2*(4*n)!*n!), O(x*x^n)))) \\ Andrew Howroyd, Jun 11 2025

Formula

G.f.: exp(Sum_{n>=1} (12*n)!*(3*n)!*(2*n)!*x^n/(n*((6*n)!)^2*(4*n)!*n!)).

A384585 a(n) = 6 * (4*n)! / ((n+1)! * (3*n+1)!).

Original entry on oeis.org

6, 3, 8, 33, 168, 969, 6072, 40365, 280488, 2017356, 14914848, 112784399, 869046168, 6803716710, 53997506640, 433647466245, 3518801467560, 28815074239908, 237887596740192, 1978246301709540, 16558857808956320, 139428557033056785, 1180350813375438840, 10041660963789578955
Offset: 0

Author

Karol A. Penson, Jun 04 2025

Keywords

Comments

Since a(1) < a(0) the sequence is not growing monotonically with n.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 6-3*n,
          8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)/(3*(3*n-1)*(3*n+1)*(n+1)))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Jun 04 2025
  • Mathematica
    a[n_]:=6*(4*n)!/((n+1)!*(3*n+1)!); Array[a,24,0] (* Stefano Spezia, Jun 04 2025 *)

Formula

O.g.f.: 6*hypergeom([1/4, 1/2, 3/4, 1], [2/3, 4/3, 2], (256*z)/27).
E.g.f.: 6*hypergeom([1/4, 1/2, 3/4], [2/3, 4/3, 2], (256*z)/27).
O.g.f. = h(z) satisfies algebraic equation of order 4: -6 - 39*z + 4096*z^2 + (1 - 12*z - 768*z^2)*h(z) - 3*z*(2*z - 1)*h(z)^2 + 3*z^2*h(z)^3 + z^3*h(z)^4 = 0.
a(n) = Integral_{x=0..256/27} x^n*W(x)*dx, where W(x) = W1(x)+W2(x)+W3(x), with
W1(x) = 4*sqrt(2)*hypergeom([-3/4, -1/12, 7/12], [1/2, 3/4], (27*x)/256)/(Pi*x^(3/4)),
W2(x) = -3*hypergeom([-1/2, 1/6, 5/6], [3/4, 5/4], (27*x)/256)/(Pi*sqrt(x)), and
W3(x) = -3*sqrt(2)*hypergeom([-1/4, 5/12, 13/12], [5/4, 3/2], (27*x)/256)/(8*Pi*x^(1/4)).
This integral representation is unique as it is the solution of the Hausdorff power moment problem of the function W(x). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 256/27. Therefore a(n) is a positive definite sequence.

A384542 Expansion of g.f. sinh(7*arctanh(14*sqrt(x)))/(98*sqrt(x)).

Original entry on oeis.org

1, 1666, 1090054, 485318932, 176760328262, 56963958713340, 16909346921973660, 4732136004374122344, 1266899066122354262598, 327667319343098397330668, 82435716917761454374571444, 20275150472587631020453400984, 4893425028040341625551135687452, 1162305136998381407493307772297560
Offset: 0

Author

Karol A. Penson, Jun 02 2025

Keywords

Programs

  • Mathematica
    a[n_]:=49^n*(105 + 464*n + 704*n^2 + 512*n^3)*(2*n)!/(105*(n!)^2); Array[a,14,0] (* Stefano Spezia, Jun 02 2025 *)

Formula

a(n) = 49^n*(105 + 464*n + 704*n^2 + 512*n^3)*(2*n)!/(105*(n!)^2).
O.g.f.: (1 + 980*x + 115248*x^2 + 1075648*x^3)/(-196*x + 1)^(7/2).
E.g.f.: exp(98*x)*(BesselI(0, 98*x)*(275365888*x^3 + 5444096*x^2 + 23520*x + 15) + 224*x*BesselI(1, 98*x)*(1229312*x^2 + 18032*x + 29))/15.

A384417 Expansion of g.f. cosh(9*arctanh(8*sqrt(x))).

Original entry on oeis.org

1, 2592, 1230336, 294469632, 49690312704, 6822215811072, 818458027622400, 89312567167549440, 9086229152658358272, 875874088323041460224, 80899222450192930308096, 7217466034064795168145408, 625687045828728598806134784, 52946875811413468120885493760, 4389120887020725640048536453120
Offset: 0

Author

Karol A. Penson, May 28 2025

Keywords

Programs

  • Maple
    seq(coeff(series((1 + 2304*x + 516096*x^2 + 22020096*x^3 + 150994944*x^4)/(-64*x + 1)^(9/2), x, 15), x, k), k=0..14);
  • Mathematica
    CoefficientList[Series[Cosh[9*ArcTanh[8*Sqrt[x]]],{x,0,14}],x] (* Stefano Spezia, May 29 2025 *)

Formula

a(n) = 16^n*(105 + 400*n + 3392*n^2 + 512*n^3 + 4096*n^4)*(2*n)!/(105*(n!)^2).
O.g.f.: (1 + 2304*x + 516096*x^2 + 22020096*x^3 + 150994944*x^4)/(-64*x + 1)^(9/2).
E.g.f.: exp(32*x)*((105 + 512*x*(269 + 256*x*(73 + 512*x)))*BesselI(0, 32*x) + 512*x*(25 + 256*x*(65 + 512*x))*BesselI(1, 32*x))/105 + (131072*x*hypergeom([3/2, 2, 2], [1, 1, 1], 64*x))/105.

A384335 Expansion of g.f.: cosh(7*arctanh(6*sqrt(x))).

Original entry on oeis.org

1, 882, 150822, 14431284, 1052738694, 65805858972, 3724625506140, 196735568051880, 9876433300259526, 476865669055691916, 22326189769485093492, 1019514155600973935448, 45604820017276687744668, 2004918589790139365901720, 86848896758228990302070520, 3714470212008822424691576400
Offset: 0

Author

Karol A. Penson, May 26 2025

Keywords

Crossrefs

Cf. A383928.

Programs

  • Mathematica
    CoefficientList[Series[Cosh[7*ArcTanh[6*Sqrt[x]]],{x,0,15}],x] (* Stefano Spezia, May 26 2025 *)

Formula

a(n) = 9^n*(512*n^3 + 64*n^2 + 144*n + 15)*(2*n)!/(15*(n!)^2).
G.f.: (1 + 756*x + 45360*x^2 + 326592*x^3)/(-36*x + 1)^(7/2).
E.g.f.: (1/5)*exp(18*x)*((5 + 4320*x + 290304*x^2 + 3981312*x^3)*BesselI(0,18*x)+((864*x + 179712*x^2 + 3981312*x^3)*BesselI(1,18*x))).

A383874 a(n) = (3*n+1)!*(3*n)!/((2*n)!*((n+1)!)^2).

Original entry on oeis.org

1, 18, 4200, 3175200, 5137292160, 14544244915200, 64008493310361600, 405192226643043840000, 3493057136053143859200000, 39378260464472988708249600000, 562659674639968187756457984000000, 9940535265182157971578474463232000000, 212816707229761791940688046273331200000000
Offset: 0

Author

Karol A. Penson, May 22 2025

Keywords

Programs

  • Mathematica
    A383874[n_] := (3*n+1)!*(3*n)!/((2*n)!*((n+1)!)^2);
    Array[A383874, 15, 0] (* Paolo Xausa, May 26 2025 *)
  • PARI
    a(n) = (3*n+1)!*(3*n)!/((2*n)!*((n+1)!)^2); \\ Michel Marcus, May 22 2025

Formula

O.g.f.: hypergeom([1/3, 2/3, 2/3, 1, 1, 4/3], [1/2, 2, 2], (729*x)/4).
E.g.f.: hypergeom([1/3, 2/3, 2/3, 1, 1, 4/3], [1/2, 2, 2, 1], (729*x)/4).
a(n) = Integral_{x>=0} x^n*W(x)*dx, n>=0, with W(x) = MeijerG([[],[-1/2,1,1]],[[0,-1/3,-1/3,1/3,-2/3],[]],4*x/729)/(81*Pi^(3/2)), where MeijerG is the Meijer G - function. Apparently W(x) cannot be represented by any other simpler functions. W(x) is a positive function on (0,oo), is singular at x = 0 and goes monotonically to zero as x -> oo. Thus a(n) is a positive definite sequence.
W(x) is the solution of the Stieltjes moment problem and it may be non-unique.
a(n) ~ 3^(6*n+2) * n^(2*n - 3/2) / (sqrt(Pi) * 2^(2*n+1) * exp(2*n)). - Vaclav Kotesovec, May 24 2025

A383928 Expansion of g.f. cosh(9*arctanh(4*sqrt(x))).

Original entry on oeis.org

1, 648, 76896, 4601088, 194102784, 6662320128, 199818854400, 5451206492160, 138644854013952, 3341194489757696, 77151510667984896, 1720777996555517952, 37293854107184922624, 788969931176505507840, 16350749459194860011520, 332885987884833366343680, 6673058165121160335851520
Offset: 0

Author

Karol A. Penson, May 15 2025

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series((589824*x^4 + 344064*x^3 + 32256*x^2 + 576*x + 1)/(-16*x + 1)^(9/2), x, 17), x, k), k=0..16);

Formula

a(n) = 4^n*(105 + 400*n + 3392*n^2 + 512*n^3 + 4096*n^4)*(2*n)!/(105*(n!)^2).
O.g.f.: (1 + 576*x + 32256*x^2 + 344064*x^3 + 589824*x^4)/(-16*x + 1)^(9/2).
E.g.f.: 134217728*((x^4 + 41/128*x^3 + 425/16384*x^2 + 525/1048576*x + 105/134217728)*BesselI(0, 8*x) + x*BesselI(1, 8*x)*(x^3 + 33/128*x^2 + 193/16384*x + 25/1048576))*exp(8*x)/105.