cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A384668 a(n) = 12 * (5*n+2)! / ((3*n+1)! * (2*n+2)!).

Original entry on oeis.org

12, 105, 1584, 29172, 596904, 13037895, 297748800, 7023149820, 169774618104, 4183919862474, 104722807600320, 2654939113240050, 68033328627480804, 1759318006963275528, 45853277234783179392, 1203249937243079847660, 31764232607604306053400, 842982010030680328418706
Offset: 0

Views

Author

Karol A. Penson, Jun 06 2025

Keywords

Crossrefs

Programs

Formula

O.g.f.: 12*hypergeom([3/5, 4/5, 1, 6/5, 7/5], [2/3, 4/3, 3/2, 2], (3125*x)/108).
E.g.f.: 12*hypergeom([3/5, 4/5, 6/5, 7/5], [2/3, 4/3, 3/2, 2], (3125*x)/108).
O.g.f. denoted by h(x), satisfies the algebraic equation of order 10:
1889568 - 6141096*x + 10628820*x^2 - 59049*x^3 + (-2834352*x^3 + 4861701*x^2 - 2834352*x - 157464)*h(x) + 13122*x*(14*x^3 - 77*x^2 + 124*x + 30)*h(x)^2 - 4374*x^2*(14*x^2 + 94*x + 99)*h(x)^3 + 729*x^3*(50*x^2 + 32*x + 377)*h(x)^4 - 243*x^4*(11*x^2 - 40*x + 456)*h(x)^5 - 243*x^5*(8*x - 121)*h(x)^6 + 54*x^6*(2*x - 95)*h(x)^7 + 567*x^7*h(x)^8 - 36*x^8*h(x)^9 + x^9*h(x)^10 = 0.
a(n) = Integral_{x=0..3125/108} x^n*W(x)*dx, where W(x) = W1(x)+W2(x)+W3(x)+W4(x), with
W1(x) = (3*sqrt(5)*csc(Pi/5)*sin(Pi/10)*hypergeom([-2/5, 1/10, 4/15, 14/15], [1/5, 2/5, 4/5], (108*x)/3125))/(2*Pi*x^(2/5)),
W2(x) = (6*sqrt(5)*csc((2*Pi)/5)*sin((3*Pi)/10)*hypergeom([-1/5, 3/10, 7/15, 17/15], [2/5, 3/5, 6/5], (108*x)/3125))/(5*Pi*x^(1/5)),
W3(x) = -(24*sqrt(5)*csc((2*Pi)/5)*sin((3*Pi)/10)*x^(1/5)*hypergeom([1/5, 7/10, 13/15, 23/15], [4/5, 7/5, 8/5], (108*x)/3125))/(125*Pi), and
W4(x) = -(33*sqrt(5)*csc(Pi/5)*sin(Pi/10)*x^(2/5)*hypergeom([2/5, 9/10, 16/15, 26/15], [6/5, 8/5, 9/5], (108*x)/3125))/(1250*Pi).
This integral representation is unique as it is the solution of the Hausdorff power moment of the function W(x). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 3125/108. Therefore a(n) is a positive definite sequence.
Showing 1-1 of 1 results.