cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000246 Number of permutations in the symmetric group S_n that have odd order.

Original entry on oeis.org

1, 1, 1, 3, 9, 45, 225, 1575, 11025, 99225, 893025, 9823275, 108056025, 1404728325, 18261468225, 273922023375, 4108830350625, 69850115960625, 1187451971330625, 22561587455281875, 428670161650355625, 9002073394657468125, 189043541287806830625
Offset: 0

Views

Author

Keywords

Comments

Michael Reid (mreid(AT)math.umass.edu) points out that the e.g.f. for the number of permutations of odd order can be obtained from the cycle index for S_n, F(Y; X1, X2, X3, ... ) := e^(X1 Y + X2 Y^2/2 + X3 Y^3/3 + ... ) and is F(Y, 1, 0, 1, 0, 1, 0, ... ) = sqrt((1 + Y)/(1 - Y)).
a(n) appears to be the number of permutations on [n] whose up-down signature has nonnegative partial sums. For example, the up-down signature of (2,4,5,1,3) is (+1,+1,-1,+1) with nonnegative partial sums 1,2,1,2 and a(3)=3 counts (1,2,3), (1,3,2), (2,3,1). - David Callan, Jul 14 2006
This conjecture has been confirmed, see Bernardi, Duplantier, Nadeau link.
a(n) is the number of permutations of [n] for which all left-to-right minima occur in odd locations in the permutation. For example, a(3)=3 counts 123, 132, 231. Proof: For such a permutation of length 2n, you can append 1,2,..., or 2n+1 (2n+1 choices) and increase by 1 the original entries that weakly exceed the appended entry. This gives all such permutations of length 2n+1. But if the original length is 2n-1, you cannot append 1 (for then 1 would be a left-to-right min in an even location) so you can only append 2,3,..., or 2n (2n-1 choices). This count matches the given recurrence relation a(2n)=(2n-1)a(2n-1), a(2n+1)=(2n+1)a(2n). - David Callan, Jul 22 2008
a(n) is the n-th derivative of exp(arctanh(x)) at x = 0. - Michel Lagneau, May 11 2010
a(n) is the absolute value of the Moebius number of the odd partition poset on a set of n+1 points, where the odd partition poset is defined to be the subposet of the partition poset consisting of only partitions using odd part size (as well as the maximum element for n even). - Kenneth M Monks, May 06 2012
Number of permutations in S_n in which all cycles have odd length. - Michael Somos, Mar 17 2019
a(n) is the number of unranked labeled binary trees compatible with the binary labeled perfect phylogeny that, among possible two-leaf binary labeled perfect phylogenies for a sample of size n+2, is compatible with the smallest number of unranked labeled binary trees. - Noah A Rosenberg, Jan 16 2025

Examples

			For the Wallis numerators, denominators and partial products see A001900. - _Wolfdieter Lang_, Dec 06 2017
		

References

  • H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 87.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are A001818 and A079484.
Row sums of unsigned triangle A049218 and of A111594, A262125.
Main diagonal of A262124.
Cf. A002019.

Programs

  • Haskell
    a000246 n = a000246_list !! n
    a000246_list = 1 : 1 : zipWith (+)
       (tail a000246_list) (zipWith (*) a000246_list a002378_list)
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else Self(n-1)+(n^2-5*n+6)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, May 02 2015
  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          a(n-1) +(n-1)*(n-2)*a(n-2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 14 2018
  • Mathematica
    a[n_] := a[n] = a[n-1]*(n+Mod[n, 2]-1); a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 21 2011, after Pari *)
    a[n_] := a[n] = (n-2)*(n-3)*a[n-2] + a[n-1]; a[0] := 0; a[1] := 1; Table[a[i], {i, 0, 20}] (* or *)  RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(n-2)*(n-3)a[n-2]+a[n-1]}, a, {n, 20}] (* G. C. Greubel, May 01 2015 *)
    CoefficientList[Series[Sqrt[(1+x)/(1-x)], {x, 0, 20}], x]*Table[k!, {k, 0, 20}] (* Stefano Spezia, Oct 07 2018 *)
  • PARI
    a(n)=if(n<1,!n,a(n-1)*(n+n%2-1))
    
  • PARI
    Vec( serlaplace( sqrt( (1+x)/(1-x) + O(x^55) ) ) )
    
  • PARI
    a(n)=prod(k=3,n,k+k%2-1) \\ Charles R Greathouse IV, May 01 2015
    
  • PARI
    a(n)=(n!/(n\2)!>>(n\2))^2/if(n%2,n,1) \\ Charles R Greathouse IV, May 01 2015
    

Formula

E.g.f.: sqrt(1-x^2)/(1-x) = sqrt((1+x)/(1-x)).
a(2*k) = (2*k-1)*a(2*k-1), a(2*k+1) = (2*k+1)*a(2*k), for k >= 0, with a(0) = 1.
Let b(1)=0, b(2)=1, b(k+2)=b(k+1)/k + b(k); then a(n+1) = n!*b(n+2). - Benoit Cloitre, Sep 03 2002
a(n) = Sum_{k=0..floor((n-1)/2)} (2k)! * C(n-1, 2k) * a(n-2k-1) for n > 0. - Noam Katz (noamkj(AT)hotmail.com), Feb 27 2001
Also successive denominators of Wallis's approximation to Pi/2 (unreduced): 1/1 * 2/1 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * .., for n >= 1.
D-finite with recurrence: a(n) = a(n-1) + (n-1)*(n-2)*a(n-2). - Benoit Cloitre, Aug 30 2003
a(n) is asymptotic to (n-1)!*sqrt(2*n/Pi). - Benoit Cloitre, Jan 19 2004
a(n) = n! * binomial(n-1, floor((n-1)/2)) / 2^(n-1), n > 0. - Ralf Stephan, Mar 22 2004
E.g.f.: e^atanh(x), a(n) = n!*Sum_{m=1..n} Sum_{k=m..n} 2^(k-m)*Stirling1(k,m) *binomial(n-1,k-1)/k!, n > 0, a(0)=1. - Vladimir Kruchinin, Dec 12 2011
G.f.: G(0) where G(k) = 1 + x*(4*k-1)/((2*k+1)*(x-1) - x*(x-1)*(2*k+1)*(4*k+1)/(x*(4*k+1) + 2*(x-1)*(k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jul 24 2012
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (2*k+1)/(1-x/(x - 1/(1 - (2*k+1)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: G(0), where G(k) = 1 + x*(2*k+1)/(1 - x*(2*k+1)/(x*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
For n >= 1, a(2*n) = (2*n-1)!!^2, a(2*n+1) = (2*n+1)*(2*n-1)!!^2. - Vladimir Shevelev, Dec 01 2013
E.g.f.: arcsin(x) - sqrt(1-x^2) + 1 for a(0) = 0, a(1) = a(2) = a(3) = 1. - G. C. Greubel, May 01 2015
Sum_{n>1} 1/a(n) = (L_0(1) + L_1(1))*Pi/2, where L is the modified Struve function. - Peter McNair, Mar 11 2022
From Peter Bala, Mar 29 2024: (Start)
a(n) = n! * Sum_{k = 0..n} (-1)^(n+k)*binomial(1/2, k)*binomial(-1/2, n-k).
a(n) = (1/4^n) * (2*n)!/n! * hypergeom([-1/2, -n], [1/2 - n], -1).
a(n) = n!/2^n * A063886(n). (End)

A006228 Expansion of e.g.f. exp(arcsin(x)).

Original entry on oeis.org

1, 1, 1, 2, 5, 20, 85, 520, 3145, 26000, 204425, 2132000, 20646925, 260104000, 2993804125, 44217680000, 589779412625, 9993195680000, 151573309044625, 2898026747200000, 49261325439503125, 1049085682486400000, 19753791501240753125, 463695871658988800000
Offset: 0

Views

Author

Keywords

References

  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are expansions of sin(arcsinh(x)) and cos(arcsinh(x)).
Bisections are A101927 and A101928.
Row sums of A385343.
Cf. A002019.
Cf. A166741, A166748. - Jaume Oliver Lafont, Oct 24 2009

Programs

  • Maple
    a:= n-> n!*coeff(series(exp(arcsin(x)), x, n+1), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 17 2018
  • Mathematica
    Distribute[ CoefficientList[ Series[ E^ArcSin[x], {x, 0, 21}], x] * Table[ n!, {n, 0, 21}]] (* Robert G. Wilson v, Feb 10 2004 *)
    With[{nn=30},CoefficientList[Series[Exp[ArcSin[x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Feb 26 2013 *)
    Table[FullSimplify[2^(n-2) * (Exp[Pi/2]-(-1)^n*Exp[-Pi/2]) * Gamma[(n-I)/2] * Gamma[(n+I)/2] / Pi], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2014 *)
  • Maxima
    a(n):=(n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2))*(-1)^(k-j),j,1,k))*binomial(k+n-1,n-1),k,1,n-m))/(m-1)!,m,1,n); /* Vladimir Kruchinin, Sep 12 2010 */

Formula

i even: a_i = Product_{j=1..i/2-1} 1 + 4j^2, i odd: a_i = Product_{j=1..(i-1)/2} 2 + 4j(j-1). - Cris Moore (moore(AT)santafe.edu), Jan 31 2001
a(0)=1, a(1)=1, a(n) = (1+(n-2)^2)*a(n-2) for n >= 2. Jaume Oliver Lafont, Oct 24 2009
a(n) = (n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(C(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*C(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!, i=0..floor(j/2))*(-1)^(k-j), j=1..k))*C(k+n-1,n-1), k=1..n-m))/(m-1)!, m=1..n), n>0. - Vladimir Kruchinin, Sep 12 2010
E.g.f.: exp(arcsin(x))=1+2z/(H(0)-z); H(k)=4k+2+z^2*(4k^2+8k+5)/H(k+1), where z=x/((1-x^2)^1/2); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2011
a(n) ~ (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 23 2013
a(n) = 2^(n-2) * (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * GAMMA((n-I)/2) * GAMMA((n+I)/2) / Pi. - Vaclav Kotesovec, Nov 06 2014

Extensions

More terms from Christian G. Bower

A049218 Triangle T(n,k) of arctangent numbers: expansion of arctan(x)^n/n!.

Original entry on oeis.org

1, 0, 1, -2, 0, 1, 0, -8, 0, 1, 24, 0, -20, 0, 1, 0, 184, 0, -40, 0, 1, -720, 0, 784, 0, -70, 0, 1, 0, -8448, 0, 2464, 0, -112, 0, 1, 40320, 0, -52352, 0, 6384, 0, -168, 0, 1, 0, 648576, 0, -229760, 0, 14448, 0, -240, 0, 1, -3628800, 0, 5360256, 0, -804320, 0, 29568, 0, -330, 0, 1
Offset: 1

Views

Author

Keywords

Comments

|T(n,k)| gives the sum of the M_2 multinomial numbers (A036039) for those partitions of n with exactly k odd parts. E.g.: |T(6,2)| = 144 + 40 = 184 from the partitions of 6 with exactly two odd parts, namely (1,5) and (3,3), with M_2 numbers 144 and 40. Proof via the general Jabotinsky triangle formula for |T(n,k)| using partitions of n into k parts and their M_3 numbers (A036040). Then with the special e.g.f. of the (unsigned) k=1 column, f(x):= arctanh(x), only odd parts survive and the M_3 numbers are changed into the M_2 numbers. For the Knuth reference on Jabotinsky triangles see A039692. - Wolfdieter Lang, Feb 24 2005 [The first two sentences have been corrected thanks to the comment by José H. Nieto S. given below. - Wolfdieter Lang, Jan 16 2012]
|T(n,k)| gives the number of permutations of {1,2,...,n} (degree n permutations) with the number of odd cycles equal to k. E.g.: |T(5,3)|= 20 from the 20 degree 5 permutations with cycle structure (.)(.)(...). Proof: Use the cycle index polynomial for the symmetric group S_n (see the M_2 array A036039 or A102189) together with the partition interpretation of |T(n,k)| given above. - Wolfdieter Lang, Feb 24 2005 [See the following José H. Nieto S. correction. - Wolfdieter Lang, Jan 16 2012]
The first sentence of the above comment is inexact, it should be "|T(n,k)| gives the number of degree n permutations which decompose into exactly k odd cycles". The number of degree n permutations with k odd cycles (and, possibly, other cycles of even length) is given by A060524. - José H. Nieto S., Jan 15 2012
The unsigned triangle with e.g.f. exp(x*arctanh(z)) is the associated Jabotinsky type triangle for the Sheffer type triangle A060524. See the comments there. - Wolfdieter Lang, Feb 24 2005
Also the Bell transform of the sequence (-1)^(n/2)*A005359(n) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle begins:
   1;
   0,   1;
  -2,   0,   1;
   0,  -8,   0,   1;
  24,   0, -20,   0,   1;
   0, 184,   0, -40,   0,   1;
  ...
O.g.f. for fifth subdiagonal: (24*t+16*t^2)/(1-t)^7 = 24*t + 184*t^2 + 784*t^3 + 2404*t^4 + ....
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260.

Crossrefs

Essentially same as A008309, which is the main entry for this sequence.
Row sums (unsigned) give A000246(n); signed row sums give A002019(n), n>=1. A137513.

Programs

  • Maple
    A049218 := proc(n,k)(-1)^((3*n+k)/2) *add(2^(j-k)*n!/j! *stirling1(j,k) *binomial(n-1,j-1),j=k..n) ; end proc: # R. J. Mathar, Feb 14 2011
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n::odd, 0, (-1)^(n/2)*n!), 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    t[n_, k_] := (-1)^((3n+k)/2)*Sum[ 2^(j-k)*n!/j!*StirlingS1[j, k]*Binomial[n-1, j-1], {j, k, n}]; Flatten[ Table[ t[n, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Dec 06 2011, after Vladimir Kruchinin *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 12;
    M = BellMatrix[If[OddQ[#], 0, (-1)^(#/2)*#!]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • PARI
    T(n,k)=polcoeff(serlaplace(atan(x)^k/k!), n)

Formula

E.g.f.: arctan(x)^k/k! = Sum_{n>=0} T(n, k) x^n/n!.
T(n,k) = ((-1)^((3*n+k)/2)*n!/2^k)*Sum_{i=k..n} 2^i*binomial(n-1,i-1)*Stirling1(i,k)/i!. - Vladimir Kruchinin, Feb 11 2011
E.g.f.: exp(t*arctan(x)) = 1 + t*x + t^2*x^2/2! + t*(t^2-2)*x^3/3! + .... The unsigned row polynomials are the Mittag-Leffler polynomials M(n,t/2). See A137513. The compositional inverse (with respect to x) (x-t/2*log((1+x)/(1-x)))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3!+ (24*t+16*t^2)/(1-t)^7*x^5/5! + .... The rational functions in t generate the (unsigned) diagonals of the table. See the Bala link. - Peter Bala, Dec 04 2011

Extensions

Additional comments from Michael Somos

A331617 E.g.f.: exp(1 / (1 - arctan(x)) - 1).

Original entry on oeis.org

1, 1, 3, 11, 49, 265, 1683, 12035, 95169, 832337, 7998467, 83033403, 922112305, 10978263257, 139956480467, 1889161216179, 26798589518593, 401123509624737, 6346168059440515, 105040097140558699, 1805102151607613361, 32421358229074354601
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Comments

a(53) is negative. - Vaclav Kotesovec, Jan 26 2020

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[1/(1 - ArcTan[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    A191700[0] = 1; A191700[n_] := A191700[n] = Sum[Binomial[n, k] If[OddQ[k], (-1)^Boole[IntegerQ[(k + 1)/4]] (k - 1)!, 0] A191700[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A191700[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
  • PARI
    seq(n)={Vec(serlaplace(exp(1/(1 - atan(x + O(x*x^n))) - 1)))} \\ Andrew Howroyd, Jan 22 2020

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A191700(k) * a(n-k).

A102059 Expansion of e.g.f. cos(arctanh(x)), even powers only.

Original entry on oeis.org

1, -1, -7, -145, -6095, -433025, -46676375, -7108596625, -1454225641375, -384836032842625, -127950804666254375, -52219402100109700625, -25668587693366081579375, -14959038795678519196890625, -10198912212548907619042984375, -8042754039731999959020139140625
Offset: 1

Views

Author

Ralf Stephan, Dec 28 2004

Keywords

Examples

			cos(arctanh(x)) = 1 - x^2/2 - 7x^4/4! - 145x^6/6! - 6095x^8/8! - ...
		

Crossrefs

Bisection of A002019.

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Rationals(), m);  b:=Coefficients(R!(1+Cos(Argtanh(x)))); [1] cat [Factorial(n-1)*b[n]: n in [3..m by 2]]; // Vincenzo Librandi, Aug 16 2018
  • Mathematica
    nmax=20; Table[(CoefficientList[Series[Cos[ArcTanh[x]],{x,0,2*nmax}],x] * Range[0,2*nmax]!)[[n]],{n,1,2*nmax,2}] (* Vaclav Kotesovec, Nov 06 2014 *)

A102058 Expansion of e.g.f. sin(arctanh(x)), odd powers only.

Original entry on oeis.org

1, 1, 5, 5, -5815, -956375, -172917875, -38579649875, -10713341611375, -3663118565923375, -1519935859717136875, -754429769289426936875, -442113820341129750734375, -302333022017412857174234375, -238762676857713027642764171875, -215766282905942334008224968671875
Offset: 1

Views

Author

Ralf Stephan, Dec 28 2004

Keywords

Examples

			sin(arctanh(x)) = x + x^3/3! + 5x^5/5! + 5x^7/7! - 5815x^9/9! - ...
		

Crossrefs

Bisection of A002019.

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Rationals(), m);  b:=Coefficients(R!(1+Sin(Argtanh(x)))); [Factorial(n-1)*b[n]: n in [2..m by 2]]; // Vincenzo Librandi, Aug 16 2018
  • Mathematica
    nmax=20; Table[(CoefficientList[Series[Sin[ArcTanh[x]],{x,0,2*nmax}],x] * Range[0,2*nmax-1]!)[[n]],{n,2,2*nmax,2}] (* Vaclav Kotesovec, Nov 06 2014 *)
  • Maxima
    a(n):=(2*n-1)!*sum((-1)^(i)*sum((stirling1(k+2*i+1,2*i+1)*2^(k)* binomial(2*n-2,k+2*i))/(k+2*i+1)!,k,0,2*n-1-2*i-1),i,0,n-1); /* Vladimir Kruchinin, Dec 12 2011 */
    

Formula

a(n) = (2*n-1)!*Sum(i=0..n-1, (-1)^(i)*Sum(k=0..2*n-1-2*i-1, (stirling1(k+2*i+1,2*i+1)*2^(k)* binomial(2*n-2,k+2*i))/(k+2*i+1)!)). - Vladimir Kruchinin, Dec 12 2011

A168406 E.g.f.: Sum_{n>=0} arctan(2^n*x)^n/n!.

Original entry on oeis.org

1, 2, 16, 496, 63488, 32899840, 68049141760, 560546415810560, 18415229458563727360, 2416302337337071616327680, 1267360474688679165942982246400, 2658246833688954938616062542151680000
Offset: 0

Views

Author

Paul D. Hanna, Nov 25 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 496*x^3/3! + 63488*x^4/4! + ...
A(x) = 1 + arctan(2*x) + arctan(4*x)^2/2! + arctan(8*x)^3/3! + arctan(16*x)^4/4! + ... + arctan(2^n*x)^n/n! + ...
a(n) = coefficient of x^n/n! in G(x)^(2^n) where G(x) = exp(arctan(x)):
G(x) = 1 + x + x^2/2! - x^3/3! - 7*x^4/4! + 5*x^5/5! + 145*x^6/6! + ... + A002019(n)*x^n/n! + ...
		

Crossrefs

Cf. A002019 (exp(arctan x)), variants: A136632, A168402, A168403, A168404, A168405, A168407, A168408.

Programs

  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,atan(2^k*x +x*O(x^n))^k/k!),n)}
    
  • PARI
    {a(n)=n!*polcoeff(exp(2^n*atan(x +x*O(x^n))),n)}

Formula

a(n) = [x^n/n!] exp(2^n*arctan(x)) for n >= 0.

A293192 a(n) = n! * [x^n] exp(n*arctan(x)).

Original entry on oeis.org

1, 1, 4, 21, 128, 745, 1440, -89075, -3031040, -76951215, -1784742400, -39056351675, -785147904000, -12815410658375, -64977212518400, 8229576066616125, 587339977981952000, 29185361934747006625, 1256364637107240960000, 48860370609512175371125, 1686271331087959982080000
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 02 2017

Keywords

Crossrefs

Cf. A002019.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n ArcTan[x]], {x, 0, n}], {n, 0, 20}]
    Table[n! SeriesCoefficient[Exp[n Sum[(-1)^k x^(2 k + 1)/(2 k + 1), {k, 0, Infinity}]], {x, 0, n}], {n, 0, 20}]

A296787 Expansion of e.g.f. exp(x*arctan(x)) (even powers only).

Original entry on oeis.org

1, 2, 4, 24, -496, 36000, -3753408, 556961664, -111591202560, 29054584410624, -9541382573767680, 3858875286730168320, -1884995591107521540096, 1094305223336273239449600, -744771228363250138965196800, 587358379156469629707528929280
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Examples

			exp(x*arctan(x)) = 1 + 2*x^2/2! + 4*x^4/4! + 24*x^6/6! - 496*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Exp[x ArcTan[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    nmax = 15; Table[(CoefficientList[Series[Exp[(I/2) x (Log[1 - I x] - Log[1 + I x])], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(x*arctan(x)).
a(n) ~ -(-1)^n * 2^(2*n-1) * n^(2*n-1) / exp(2*n). - Vaclav Kotesovec, Dec 21 2017

A012960 Expansion of e.g.f. exp(arctan(x)+log(x+1)).

Original entry on oeis.org

1, 2, 3, 2, -11, -30, 175, 1010, -6135, -60670, 374875, 5719650, -35199875, -779710750, 4687746375, 145208599250, -836951243375, -35435177514750, 191995883837875, 10975003189933250, -54688433347786875
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Examples

			1+2*x+3/2!*x^2+2/3!*x^3-11/4!*x^4-30/5!*x^5...
		

Crossrefs

Cf. A002019.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[ArcTan[x]+Log[x+1]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 25 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(atan(x)+log(x+1)))) \\ Michel Marcus, May 10 2020

Formula

a(n) = (n*A002019(n)-A002019(n+1))/(n-1) for n > 1. [Mark van Hoeij, Jul 02 2010]

Extensions

Definition clarified by Harvey P. Dale, Jul 25 2013
Showing 1-10 of 10 results.