cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: José H. Nieto S.

José H. Nieto S.'s wiki page.

José H. Nieto S. has authored 3 sequences.

A216779 Number of derangements on n elements with an odd number of cycles.

Original entry on oeis.org

0, 0, 1, 2, 6, 24, 135, 930, 7420, 66752, 667485, 7342290, 88107426, 1145396472, 16035550531, 240533257874, 3848532125880, 65425046139840, 1177650830516985, 22375365779822562, 447507315596451070, 9397653627525472280, 206748379805560389951, 4755212735527888968642
Offset: 0

Author

José H. Nieto S., Sep 16 2012

Keywords

Crossrefs

Cf. A000166, A216778 (derangements with even number of cycles).

Programs

  • Maple
    a := proc (n) local x, y, t, k; if n <= 1 then 0 else x := 0; y := 0; for k from 2 to n do t := y; y := (k-1)*(x+y-k+3); x := t end do; y end if end proc;
  • Mathematica
    nn=23;Range[0,nn]!CoefficientList[Series[Sinh[Log[1/(1-x)]-x],{x,0,nn}],x] (* Geoffrey Critzer, Jun 23 2014 *)

Formula

a(n+1) = n*(a(n) + a(n-1) - n + 2), a(0)=0, a(1)=0.
a(n) = (A000166(n) + n - 1)/2.
E.g.f.: sinh(log(1/(1-x)) - x). - Geoffrey Critzer, Jun 23 2014

A216778 Number of derangements on n elements with an even number of cycles.

Original entry on oeis.org

1, 0, 0, 0, 3, 20, 130, 924, 7413, 66744, 667476, 7342280, 88107415, 1145396460, 16035550518, 240533257860, 3848532125865, 65425046139824, 1177650830516968, 22375365779822544, 447507315596451051, 9397653627525472260, 206748379805560389930, 4755212735527888968620
Offset: 0

Author

José H. Nieto S., Sep 16 2012

Keywords

Crossrefs

Cf. A000166, A216779 (derangements with odd number of cycles).

Programs

  • Maple
    a := proc (n) local x, y, t, k; if n = 0 then 1 elif n = 1 then 0 else x := 1; y := 0; for k from 2 to n do t := y; y := (k-1)*(x+y+k-3); x := t end do; y end if end proc;
  • Mathematica
    nn=23;Range[0,nn]!*CoefficientList[Series[Cosh[Log[1/(1-x)]-x],{x,0,nn}],x] (* Geoffrey Critzer, Jun 23 2014 *)

Formula

a(n+1) = n*(a(n) + a(n-1) + n - 2), a(0)=1, a(1)=0.
a(n) = (A000166(n) - n + 1)/2.
E.g.f.: cosh(log(1/(1-x)) - x). - Geoffrey Critzer, Jun 23 2014

A204420 Triangle T(n,k) giving number of degree-2n permutations which decompose into exactly k cycles of even length, k=0..n.

Original entry on oeis.org

1, 0, 1, 0, 6, 3, 0, 120, 90, 15, 0, 5040, 4620, 1260, 105, 0, 362880, 378000, 132300, 18900, 945, 0, 39916800, 45571680, 18711000, 3534300, 311850, 10395, 0, 6227020800, 7628100480, 3511347840, 794593800, 94594500, 5675670, 135135
Offset: 0

Author

José H. Nieto S., Jan 15 2012

Keywords

Comments

The row polynomials t(n,x):= sum(T(n,k)*x^k, k=0..n) satisfy the recurrence relation t(n,x) = (2n-1)*(x+2n-2)*t(n-1,x), with t(0,x)=1, hence t(n,x)=(2n-1)!!*x(x+2)(x+4)...(x+2n-2).

Examples

			1;
0,        1,
0,        6,        3;
0,      120,       90,       15;
0,     5040,     4620,     1260,     105;
0,   362880,   378000,   132300,   18900,    945;
0, 39916800, 45571680, 18711000, 3534300, 311850, 10395;
		

Crossrefs

Row sums give: A001818. - Alois P. Heinz, Jul 21 2013

Programs

  • Maple
    T_row:= proc(n) local k; seq(doublefactorial(2*n-1)*2^(n-k)* coeff(expand(pochhammer(x, n)), x, k), k=0..n) end: seq(T_row(n), n=0..10);
  • Mathematica
    nn=12;Prepend[Map[Prepend[Select[#,#>0&],0]&,Table[(Range[0, nn]!CoefficientList[ Series[(1-x^2)^(-y/2),{x,0,nn}],{x,y}])[[n]],{n,3,nn,2}]],{1}]//Grid (* Geoffrey Critzer, Jul 21 2013 *)
  • PARI
    T(n,k) = (2*n)!/(2^n*n!)*(-2)^(n-k)*stirling(n,k,1); \\ Andrew Howroyd, Feb 12 2018

Formula

T(n,k) = (2n-1)!!*2^(n-k)*A132393(n,k).
T(n,k) = (2n-1)T(n-1,k-1) + (2n-1)(2n-2)*T(n-1,k); T(0,0)=1, T(n,0)=0 for n>0,
T(n,n) = (2n-1)!! = A001147(n).
T(n,1) = (2n-1)! = A009445(n-1).