cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Peter McNair

Peter McNair's wiki page.

Peter McNair has authored 2 sequences.

A365066 Decimal expansion of the constant 1/0! - 1/1! + 1/2! + 1/3! - 1/4! + 1/5! + 1/6! - 1/7! + ...

Original entry on oeis.org

6, 3, 4, 5, 5, 1, 1, 1, 8, 2, 6, 1, 2, 2, 5, 5, 4, 2, 7, 5, 7, 6, 1, 4, 2, 4, 1, 3, 0, 9, 6, 0, 7, 7, 2, 2, 3, 6, 3, 0, 7, 9, 9, 5, 0, 2, 5, 1, 6, 3, 2, 6, 5, 5, 8, 7, 5, 4, 8, 9, 1, 1, 6, 8, 7, 6, 9, 7, 3, 1, 4, 8, 0, 3, 1, 3, 9, 9, 5, 3, 5, 3, 8, 5, 6, 5, 6, 8, 3, 0, 6, 6, 4, 9, 6, 5, 1, 1, 6, 9, 8, 9, 8, 2, 7
Offset: 0

Author

Peter McNair, Aug 19 2023

Keywords

Examples

			0.63455111826122554275761424130960772236307995025163265587548911687697314...
		

Crossrefs

Cf. A143820.

Programs

  • Maple
    Digits:=105: evalf(sum(1/(3*n)!-1/(3*n+1)!+1/(3*n+2)!, n=0..infinity)); # Michal Paulovic, Aug 20 2023
  • Mathematica
    RealDigits[E/3 - (4*Sin[Sqrt[3]/2-Pi/6])/(3*Sqrt[E]), 10, 105][[1]]
  • PARI
    suminf(n=0,1/(3*n)!-1/(3*n+1)!+1/(3*n+2)!) \\ Michal Paulovic, Aug 20 2023

Formula

Equals e - 2*A143820.
Equals Sum_{n>=0} (-1)^(2^((n-1) mod 3) mod 2) / n! = e/3 - 4*sin(sqrt(3)/2 - Pi/6) / (3*sqrt(e)).
Equals Sum_{n>=0} 1/(3*n)! - 1/(3*n+1)! + 1/(3*n+2)!. - Michal Paulovic, Aug 19 2023

A352526 a(n) = Product_{k=0..n} Nimsum (2*k + 2), with Nimsum (2 + 2) = 0 replaced by 1.

Original entry on oeis.org

2, 2, 12, 48, 480, 3840, 53760, 645120, 11612160, 185794560, 4087480320, 81749606400, 2125489766400, 51011754393600, 1530352631808000, 42849873690624000, 1456895705481216000, 46620662575398912000, 1771585177865158656000, 63777066403145711616000, 2678636788932119887872000
Offset: 0

Author

Peter McNair, Mar 19 2022

Keywords

Comments

Nimsum 2*k + 2 = A004443(2*k).
Sum_{n>0} 1/a(n) = 1/sqrt(e) = A092605.
Sum_{n>0} 1/a(2*n-1) = sinh(1/2) = A334367.
Sum_{n>0} 1/a(2*n) = cosh(1/2) - 2*sinh(1/2).
a(n)/2^n = abs(A265376(n+1)) = Product_{k=0..n} Nimsum k + 1, with Nimsum 1 + 1 = 0 replaced by 1, n > 0.

Crossrefs

Programs

  • Mathematica
    a[n_] := Product[If[k == 1, 1, BitXor[2*k, 2]], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Mar 19 2022 *)
  • PARI
    a(n) = 2*prod(k=2,n,bitxor(2*k, 2))

Formula

a(n) = 2*Product_{k=2..n} A004443(2*k).
a(n) = 2^(n-1)*(n+1)!/floor((n+1)/2), n > 0.
a(n) = 2^(n-1)*(1+(-1)^n)*((n-1)!+n!)-((-1)^n-1)*(2*n)!!/2, n > 0.
a(n) = 2*a(n-1)*(n+(-1)^n), n > 1, with a(1) = 2.