A063886
Number of n-step walks on a line starting from the origin but not returning to it.
Original entry on oeis.org
1, 2, 2, 4, 6, 12, 20, 40, 70, 140, 252, 504, 924, 1848, 3432, 6864, 12870, 25740, 48620, 97240, 184756, 369512, 705432, 1410864, 2704156, 5408312, 10400600, 20801200, 40116600, 80233200, 155117520, 310235040, 601080390, 1202160780, 2333606220, 4667212440
Offset: 0
a(4) = 6 because there are six length four walks that do not return to the origin: {-1, -2, -3, -4}, {-1, -2, -3, -2}, {-1, -2, -1, -2}, {1, 2, 1, 2}, {1, 2, 3, 2}, {1, 2, 3, 4}. There are also six such walks that return exactly one time: {-1, -2, -1, 0}, {-1, 0, -1, -2}, {-1, 0, 1, 2}, {1, 0, -1, -2}, {1, 0, 1, 2}, {1, 2, 1, 0}. - _Geoffrey Critzer_, Jan 24 2010
The a(5) = 12 subsets in which the even elements appear as often at even positions as at odd positions: {}, {1}, {3}, {5}, {1,3}, {1,5}, {2,4}, {3,5}, {1,2,4}, {1,3,5}, {2,4,5}, {1,2,4,5}. - _Gus Wiseman_, Mar 17 2018
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Emeric Deutsch, Problem 11424, The American Mathematical Monthly, Vol. 116, No. 3 (March 2009), p. 277.
- D. Perrin, A conjecture on rational sequences, pp. 267-274 of R. M. Capocelli, ed., Sequences, Springer-Verlag, NY 1990.
Apart from initial terms, same as
A182027.
Cf.
A000108,
A000246,
A000712,
A000984,
A001405,
A001700,
A002420,
A006232,
A007877,
A026010,
A028329,
A045931,
A047073,
A089849,
A097613,
A106180,
A120617,
A130777,
A130780,
A138364,
A164584,
A171966,
A239241,
A300787,
A300788,
A300789.
-
[1] cat [2*Binomial(n-1, Floor((n-1)/2)): n in [1..40]]; // G. C. Greubel, Jun 07 2023
-
seq(seq(binomial(2*j,j)*i, i=1..2),j=0..16); # Zerinvary Lajos, Apr 28 2007
# second Maple program:
a:= proc(n) option remember; `if`(n<2, n+1,
4*a(n-2) +2*(a(n-1) -4*a(n-2))/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Feb 10 2014
# third program:
A063886 := series(BesselI(0, 2*x)*(1 + x*2 + x*Pi*StruveL(1, 2*x)) - Pi*x*BesselI(1, 2*x)*StruveL(0, 2*x), x = 0, 34): seq(n!*coeff(A063886, x, n), n = 0 .. 33); # Mélika Tebni, Jun 17 2024
-
Table[Length[Select[Map[Accumulate, Strings[{-1, 1}, n]], Count[ #, 0] == 0 &]], {n, 0, 20}] (* Geoffrey Critzer, Jan 24 2010 *)
CoefficientList[Series[Sqrt[(1+2x)/(1-2x)],{x,0,40}],x] (* Harvey P. Dale, Apr 28 2016 *)
-
a(n)=(n==0)+2*binomial(n-1,(n-1)\2)
-
a(n) = 2^n*prod(k=0,n-1,(k/n+1/n)^((-1)^k)); \\ Michel Marcus, Dec 03 2013
-
from math import ceil
from sympy import binomial
def a(n):
if n==0: return 1
return 2*binomial(n-1,(n-1)//2)
print([a(n) for n in range(18)])
# David Nacin, Feb 29 2012
-
[2*binomial(n-1, (n-1)//2) + int(n==0) for n in range(41)] # G. C. Greubel, Jun 07 2023
A005803
Second-order Eulerian numbers: a(n) = 2^n - 2*n.
Original entry on oeis.org
1, 0, 0, 2, 8, 22, 52, 114, 240, 494, 1004, 2026, 4072, 8166, 16356, 32738, 65504, 131038, 262108, 524250, 1048536, 2097110, 4194260, 8388562, 16777168, 33554382, 67108812, 134217674, 268435400, 536870854, 1073741764, 2147483586
Offset: 0
G.f. = 1 + 2*x^3 + 8*x^4 + 22*x^5 + 52*x^6 + 114*x^7 + 240*x^8 + 494*x^9 + ...
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..500
- S. Bilotta, E. Grazzini, and E. Pergola, Enumeration of Two Particular Sets of Minimal Permutations, J. Int. Seq. 18 (2015) 15.10.2.
- I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory, A 24 (1978), 24-33.
- Jim Haglund and Mirko Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004).
- Sandi Klavžar, Uroš Milutinović and Ciril Petr, Hanoi graphs and some classical numbers, Expo. Math. 23 (2005), no. 4, 371-378.
- James McClung, Constructions and Applications of W-States, Bachelor Thesis, Worcester Polytechnic Institute (2020).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Sam Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv preprint arXiv:1810.00993 [math.CO], 2018 (A000246); Discrete Math, 343 (2020), article 111869.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Equivalent to second column of
A008517.
Equals for n =>3 the third right hand column of
A163936.
-
a005803 n = 2 ^ n - 2 * n
a005803_list = 1 : f 1 [0, 2 ..] where
f x (z:zs@(z':_)) = y : f y zs where y = (x + z) * 2 - z'
-- Reinhard Zumkeller, Jan 19 2014
-
[2^n-2*n: n in [0..30]]; // Wesley Ivan Hurt, Jun 04 2014
-
A005803:=-2*z/(2*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence except for three leading terms
-
Table[2^n-2n,{n,0,50}] (* or *) LinearRecurrence[{4,-5,2},{1,0,0},51] (* Harvey P. Dale, May 21 2011 *)
-
{a(n) = if( n<0, 0, 2^n - 2*n)}; /* Michael Somos, Oct 13 2002 */
A079484
a(n) = (2n-1)!! * (2n+1)!!, where the double factorial is A006882.
Original entry on oeis.org
1, 3, 45, 1575, 99225, 9823275, 1404728325, 273922023375, 69850115960625, 22561587455281875, 9002073394657468125, 4348001449619557104375, 2500100833531245335015625, 1687568062633590601135546875, 1321365793042101440689133203125
Offset: 0
G.f. = 1 + 3*x + 45*x^2 + 1575*x^3 + 99225*x^4 + 9823275*x^5 + ...
M(5) =
[1, 2, 3, 1, 5]
[1, 2, 2, 4, 5]
[1, 3, 3, 4, 5]
[4, 2, 3, 4, 5]
[1, 2, 3, 4, 5].
Integral_{x=0..oo} x^3*BesselK(1, sqrt(x)) = 1575*Pi. - _Olivier Gérard_, May 20 2009
- Miklós Bóna, A walk through combinatorics, World Scientific, 2006.
- Alois P. Heinz, Table of n, a(n) for n = 0..224
- Cyril Banderier, Markus Kuba, and Michael Wallner, Analytic Combinatorics of Composition schemes and phase transitions with mixed Poisson distributions, arXiv:2103.03751 [math.PR], 2021.
- Guo-Niu Han and Christian Krattenthaler, Rectangular Scott-type permanents, arXiv:math/0003072 [math.RA], 2000.
- Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 17 Nov 2014.
- MathOverflow, Geometric / physical / probabilistic interpretations of Riemann zeta(n>1)?, answer by Tom Copeland posted in Aug 2021.
- Henryk Minc, On a conjecture of R. F. Scott (1881), Linear Algebra Appl., Vol. 28 (1979), pp. 141-153.
- Theodoros Theodoulidis, On the Closed-Form Expression of Carson’s Integral, Period. Polytech. Elec. Eng. Comp. Sci., Vol. 59, No. 1 (2015), pp. 26-29.
- Eric Weisstein's World of Mathematics, Struve function.
Diagonal elements of
A306364 in even-numbered rows.
-
I:=[1, 3]; [n le 2 select I[n] else (4*n^2-8*n+3)*Self(n-1): n in [1..20]]; // Vincenzo Librandi, Nov 18 2014
-
a:= n-> (d-> d(2*n-1)*d(2*n+1))(doublefactorial):
seq(a(n), n=0..15); # Alois P. Heinz, Jan 30 2013
# second Maple program:
A079484 := n-> LinearAlgebra[Determinant](Matrix(2*n+1, (i, j)-> `if`(i+j=2*n+1, j, i))): seq(A079484(n), n=0..14); # Rainer Rosenthal, Jun 18 2024
-
a[n_] := (2n - 1)!!*(2n + 1)!!; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jan 30 2013 *)
-
/* Formula using the zeta function and a log integral:*/
L(n)= intnum(t=0, 1, log(1-1/t)^n);
Zetai(n)= -I*I^n*(2*Pi)^(n-1)/(n-1)*L(1-n);
a(m)={my(n=m+1);round(real(-I*2^(2*n-1)*Zetai(1/2-n)*L(-1/2+n)/(Zetai(-1/2+n)*L(1/2-n))))};
/* Gerry Martens, Mar 07 2011, adapted to offset 0 by Hugo Pfoertner, Jun 19 2024 */
-
{a(n) = if( n<0, -1 / self()(-1-n), (2*n + 1)! * (2*n)! / (n! * 2^n)^2 )}; /* Michael Somos, May 04 2017 */
-
{a(n) = if( n<0, -1 / self()(-1-n), my(m = 2*n + 1); m! * polcoeff( x / sqrt( 1 - x^2 + x * O(x^m) ), m))}; /* Michael Somos, May 04 2017 */
-
\\ using the Pochhammer symbol
a(n) = {my(P(x,k)=gamma(x+k)/gamma(x)); 4^n*round(P(1/2,n)*P(3/2,n))} \\ Hugo Pfoertner, Jun 20 2024
-
\\ Scott's (1881) method
a(n) = {my(m=2*n+1, X = polroots(x^m-1), Y = polroots(x^m+1), M = matrix(m, m, i, j, 1/(X[i]-Y[j]))); (-1)^n * round(2^m * real(matpermanent(M)))}; \\ Hugo Pfoertner, Jun 23 2024
Simpler description from Daniel Flath (deflath(AT)yahoo.com), Mar 05 2004
A262124
Number A(n,k) of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 3, 5, 0, 1, 1, 1, 3, 8, 16, 0, 1, 1, 1, 3, 9, 40, 61, 0, 1, 1, 1, 3, 9, 44, 162, 272, 0, 1, 1, 1, 3, 9, 45, 219, 1134, 1385, 0, 1, 1, 1, 3, 9, 45, 224, 1445, 6128, 7936, 0, 1, 1, 1, 3, 9, 45, 225, 1568, 9985, 55152, 50521, 0
Offset: 0
p = 1423 is counted by T(4,1) because the up-down signature of p = 1423 is 1,-1,1 with partial sums 1,0,1.
q = 1432 is not counted by any T(4,k) because the up-down signature of q = 1432 is 1,-1,-1 with partial sums 1,0,-1.
A(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
A(4,2) = 8: 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.
A(4,3) = 9: 1234, 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 3, 3, 3, 3, 3, ...
0, 5, 8, 9, 9, 9, 9, 9, ...
0, 16, 40, 44, 45, 45, 45, 45, ...
0, 61, 162, 219, 224, 225, 225, 225, ...
0, 272, 1134, 1445, 1568, 1574, 1575, 1575, ...
-
b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, x^c,
(p-> add(coeff(p, x, i)*x^max(i, c), i=0..degree(p)))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
A:= (n,k)-> `if`(n=0, 1, (p-> add(coeff(p, x, i), i=0..min(n, k))
)(add(b(j-1, n-j, 0), j=1..n))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[u_, o_, c_] := b[u, o, c] = If[c<0, 0, If[u+o == 0, x^c, Function[p, Sum[ Coefficient[p, x, i]*x^Max[i, c], {i, 0, Exponent[p, x]}]][Sum[b[u-j, o - 1+j, c-1], {j, 1, u}] + Sum[b[u+j-1, o-j, c+1], {j, 1, o}]]]]; A[n_, k_] := If[n==0, 1, Function[p, Sum[Coefficient[p, x, i], {i, 0, Min[n, k]}]][ Sum[b[j-1, n-j, 0], {j, 1, n}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
A262125
Number T(n,k) of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value of k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 5, 3, 1, 0, 0, 16, 24, 4, 1, 0, 0, 61, 101, 57, 5, 1, 0, 0, 272, 862, 311, 123, 6, 1, 0, 0, 1385, 4743, 3857, 778, 254, 7, 1, 0, 0, 7936, 47216, 27589, 14126, 1835, 514, 8, 1, 0, 0, 50521, 322039, 355751, 111811, 47673, 4189, 1031, 9, 1, 0
Offset: 0
T(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
T(4,2) = 3: 1243, 1342, 2341.
T(4,3) = 1: 1234.
Triangle T(n,k) begins:
1;
1, 0;
0, 1, 0;
0, 2, 1, 0;
0, 5, 3, 1, 0;
0, 16, 24, 4, 1, 0;
0, 61, 101, 57, 5, 1, 0;
0, 272, 862, 311, 123, 6, 1, 0;
0, 1385, 4743, 3857, 778, 254, 7, 1, 0;
-
b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, x^c,
(p-> add(coeff(p, x, i)*x^max(i, c), i=0..degree(p)))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
T:= n-> `if`(n=0, 1, (p-> seq(coeff(p, x, i), i=0..n)
)(add(b(j-1, n-j, 0), j=1..n))):
seq(T(n), n=0..10);
-
b[u_, o_, c_] := b[u, o, c] = If[c<0, 0, If[u+o==0, x^c, Sum[Coefficient[ #, x, i]*x^Max[i, c], {i, 0, Exponent[#, x]}]]& @ Sum[b[u-j, o-1+j, c-1], {j, 1, u}] + Sum[b[u+j-1, o-j, c+1], {j, 1, o}]];
T[n_] := If[n==0, {1}, Table[Coefficient[#, x, i], {i, 0, n}]]& @ Sum[b[j-1, n-j, 0], {j, 1, n}];
T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Jan 19 2020, after Alois P. Heinz *)
A111594
Triangle of arctanh numbers.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 24, 0, 20, 0, 1, 0, 0, 184, 0, 40, 0, 1, 0, 720, 0, 784, 0, 70, 0, 1, 0, 0, 8448, 0, 2464, 0, 112, 0, 1, 0, 40320, 0, 52352, 0, 6384, 0, 168, 0, 1, 0, 0, 648576, 0, 229760, 0, 14448, 0, 240, 0, 1
Offset: 0
Binomial convolution of row polynomials:
p(3,x)= 2*x+x^3; p(2,x)=x^2, p(1,x)= x, p(0,x)= 1,
together with those from A060524:
s(3,x)= 5*x+x^3; s(2,x)= 1+x^2, s(1,x)= x, s(0,x)= 1; therefore:
5*(x+y)+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = 2*y+y^3 + 3*x*y^2 + 3*(1+x^2)*y + (5*x+x^3).
Triangle begins:
1;
0, 1;
0, 0, 1;
0, 2, 0, 1;
0, 0, 8, 0, 1;
0, 24, 0, 20, 0, 1;
0, 0, 184, 0, 40, 0, 1;
0, 720, 0, 784, 0, 70, 0, 1;
0, 0, 8448, 0, 2464, 0, 112, 0, 1;
...
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> `if`(n::even, n!, 0), 10); # Peter Luschny, Jan 27 2016
-
rows = 10;
t = Table[If[EvenQ[n], n!, 0], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
# uses[riordan_array from A256893]
riordan_array(1, atanh(x), 9, exp=true) # Peter Luschny, Apr 19 2015
A296676
Expansion of e.g.f. 1/(1 - arctanh(x)).
Original entry on oeis.org
1, 1, 2, 8, 40, 264, 2048, 18864, 196992, 2330112, 30519552, 440998656, 6940852224, 118501542912, 2177222879232, 42886017982464, 900748014944256, 20107190510714880, 475167358873239552, 11854636521914695680, 311291779253770911744, 8583598112533040332800, 247944624171011289907200
Offset: 0
1/(1 - arctanh(x)) = 1 + x/1! + 2*x^2/2! + 8*x^3/3! + 40*x^4/4! + 264*x^5/5! + ...
-
S:= series(1/(1-arctanh(x)),x,41):
seq(coeff(S,x,j)*j!,j=0..40); # Robert Israel, Dec 18 2017
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
a(n-j)*binomial(n, j)*(j-1)!, 0), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 22 2021
-
nmax = 22; CoefficientList[Series[1/(1 - ArcTanh[x]), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[1/(1 + (Log[1 - x] - Log[1 + x])/2), {x, 0, nmax}], x] Range[0, nmax]!
-
x='x+O('x^99); Vec(serlaplace(1/(1+(log(1-x)-log(1+x))/2))) \\ Altug Alkan, Dec 18 2017
A002019
a(n) = a(n-1) - (n-1)(n-2)a(n-2).
Original entry on oeis.org
1, 1, 1, -1, -7, 5, 145, -5, -6095, -5815, 433025, 956375, -46676375, -172917875, 7108596625, 38579649875, -1454225641375, -10713341611375, 384836032842625, 3663118565923375, -127950804666254375, -1519935859717136875
Offset: 0
- Dwight, Tables of Integrals ..., Eq. 552.5, page 133.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- G. Guillotte and L. Carlitz, Problem H-216 and solution, Fib. Quarter. p. 90, Vol 13, 1, Feb. 1975.
- R. Kelisky, The numbers generated by exp(arctan x), Duke Math. J., 26 (1959), 569-581.
- H. P. Robinson and N. J. A. Sloane, Correspondence, 1971-1972
- Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
Row sums of signed triangle
A049218.
-
a002019 n = a002019_list !! n
a002019_list = 1 : 1 : zipWith (-)
(tail a002019_list) (zipWith (*) a002019_list a002378_list)
-- Reinhard Zumkeller, Feb 27 2012
-
I:=[1,1]; [1] cat [ n le 2 select I[n] else Self(n-1)-(n^2-3*n+2)*Self(n-2): n in [1..35]]; // Vincenzo Librandi, May 02 2015
-
RecurrenceTable[{a[0]==1,a[1]==1,a[n]==a[n-1]-(n-1)(n-2)a[n-2]}, a[n],{n,30}] (* Harvey P. Dale, May 02 2011 *)
CoefficientList[Series[E^(ArcTan[x]),{x,0,20}],x]*Range[0,20]! (* Vaclav Kotesovec, Nov 06 2014 *)
-
a(n):=n!*sum(if oddp(m+n) then 0 else (-1)^((3*n+m)/2)/(2^m*m!)*sum(2^i*binomial(n-1,i-1)*m!/i!*stirling1(i,m),i,m,n),m,1,n); /* Vladimir Kruchinin, Aug 05 2010 */
A049218
Triangle T(n,k) of arctangent numbers: expansion of arctan(x)^n/n!.
Original entry on oeis.org
1, 0, 1, -2, 0, 1, 0, -8, 0, 1, 24, 0, -20, 0, 1, 0, 184, 0, -40, 0, 1, -720, 0, 784, 0, -70, 0, 1, 0, -8448, 0, 2464, 0, -112, 0, 1, 40320, 0, -52352, 0, 6384, 0, -168, 0, 1, 0, 648576, 0, -229760, 0, 14448, 0, -240, 0, 1, -3628800, 0, 5360256, 0, -804320, 0, 29568, 0, -330, 0, 1
Offset: 1
Triangle begins:
1;
0, 1;
-2, 0, 1;
0, -8, 0, 1;
24, 0, -20, 0, 1;
0, 184, 0, -40, 0, 1;
...
O.g.f. for fifth subdiagonal: (24*t+16*t^2)/(1-t)^7 = 24*t + 184*t^2 + 784*t^3 + 2404*t^4 + ....
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260.
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- Eric Weisstein's World of Mathematics, Mittag-Leffler Polynomial
Essentially same as
A008309, which is the main entry for this sequence.
-
A049218 := proc(n,k)(-1)^((3*n+k)/2) *add(2^(j-k)*n!/j! *stirling1(j,k) *binomial(n-1,j-1),j=k..n) ; end proc: # R. J. Mathar, Feb 14 2011
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> `if`(n::odd, 0, (-1)^(n/2)*n!), 10); # Peter Luschny, Jan 28 2016
-
t[n_, k_] := (-1)^((3n+k)/2)*Sum[ 2^(j-k)*n!/j!*StirlingS1[j, k]*Binomial[n-1, j-1], {j, k, n}]; Flatten[ Table[ t[n, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Dec 06 2011, after Vladimir Kruchinin *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 12;
M = BellMatrix[If[OddQ[#], 0, (-1)^(#/2)*#!]&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
T(n,k)=polcoeff(serlaplace(atan(x)^k/k!), n)
A001900
Successive numerators of Wallis's approximation to Pi/2 (unreduced).
Original entry on oeis.org
1, 2, 4, 16, 64, 384, 2304, 18432, 147456, 1474560, 14745600, 176947200, 2123366400, 29727129600, 416179814400, 6658877030400, 106542032486400, 1917756584755200, 34519618525593600, 690392370511872000, 13807847410237440000, 303772643025223680000
Offset: 0
From _Wolfdieter Lang_, Dec 06 2017: (Start)
Partial products of the rows N (for numerators a(n)) and D (for denominators b(n) = A000246(n+1)) begin:
n: 0 1 2 3 4 5 6 7 8 9 10 ...
N: 1 2 2 4 4 6 6 8 8 10 10 ...
D: 1 1 3 3 5 5 7 7 9 9 11 ...
a(n): 1 2 4 16 64 384 2304 18432 147456 14745601 4745600 ...
b(n): 1 1 3 9 45 225 1575 11025 99225 893025 9823275 ... (End)
- H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.
- Alois P. Heinz, Table of n, a(n) for n = 0..449
- John Derbyshire, Prime Obsession, Plume books, p. 16, 2003.
- Jonathan Sondow, A faster product for Pi and a new integral for ln(Pi/2), arXiv:math/0401406 [math.NT], 2004.
- Jonathan Sondow, A faster product for Pi and a new integral for ln(Pi/2), Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
- Index to divisibility sequences
-
a[n_] := a[n] = If[n==0, 1, (n+Mod[n, 2]) a[n-1]];
a /@ Range[0, 21] (* Jean-François Alcover, Jan 31 2020 *)
-
a(n)=if(n<0,0,prod(k=1,n,if(k%2,k+1,k)))
Showing 1-10 of 47 results.
Next
Comments