cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Markus Kuba

Markus Kuba's wiki page.

Markus Kuba has authored 2 sequences.

A378026 Number of simple lattice paths, steps (-1,0,0),(0,-1,0),(0,0,-1), of length 3n from (n,n,n) to the origin, never returning to the diagonal x = y = z before the origin.

Original entry on oeis.org

1, 6, 54, 816, 14814, 295812, 6262488, 137929392, 3125822238, 72383434332, 1704669773652, 40693683620448, 982302086191752, 23933136140685648, 587728374471479952, 14530886841268923264, 361374588105759096606, 9033515437023805672044, 226844689948433272890396, 5719461854507320708714464
Offset: 0

Author

Markus Kuba, Nov 14 2024

Keywords

Comments

Inversion of A006480 de Bruijn's S(3,n): (3n)!/(n!)^3.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; (3*n)!/(n!)^3 end:
    a:= proc(n) option remember;
          b(n)-add(a(n-i)*b(i), i=1..n-1)
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Nov 15 2024
  • Mathematica
    nmax = 20; CoefficientList[Series[2 - 1/Hypergeometric2F1[1/3, 2/3, 1, 27*x], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 15 2024 *)

Formula

G.f.: 2 - 1/P(z) where P(z) = 2F1(1/3,2/3;1;27z).
INVERTi transform of A006480.

Extensions

More terms from Vaclav Kotesovec, Nov 15 2024

A233389 Naturally embedded ternary trees having no internal node of label greater than 1.

Original entry on oeis.org

1, 1, 3, 11, 46, 209, 1006, 5053, 26227, 139726, 760398, 4211959, 23681987, 134869448, 776657383, 4516117107, 26486641078, 156532100029, 931426814462, 5576590927886, 33574649282538, 203169756237944, 1235156720288767, 7541099028832261, 46222213821431646
Offset: 0

Author

Markus Kuba, Dec 08 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 1+n*(n-1),
          ((1349*n^2-2738*n+953)*n*a(n-1) -(5567*n^3-20114*n^2
           +22439*n-7320)*a(n-2)-(3*(3*n-4))*(19*n-11)*(3*n-5)
           *a(n-3))/((2*(2*n-1))*(n+1)*(19*n-30)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 03 2017
  • Mathematica
    a[n_] := a[n] = If[n < 3, 1 + n*(n - 1), ((1349*n^2 - 2738*n + 953)*n*a[n - 1] - (5567*n^3 - 20114*n^2 + 22439*n - 7320)*a[n - 2] - (3*(3*n - 4)) * (19*n - 11)*(3*n - 5)*a[n - 3])/((2*(2*n - 1))*(n + 1)*(19*n - 30))];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N); T=serreverse(x-x^3)/x; v=Vec(((T-2)*T^3/(T^2-3*T+1))); vector(#v\2, n, v[2*n-1]) \\ Joerg Arndt, May 26 2016

Formula

G.f.: (T(z) - 2)*T^3(z)/(T^2(z) - 3*T(z) + 1), where T(z) = 1 + z*T^3(z) is the generating function of ternary trees - see A001764.
From Peter Bala, Feb 06 2022: (Start)
a(n) = (2/(n+1))*binomial(3*n,n) + Sum_{k=0..n} (-1)^(k+1)*Fibonacci(k+1)* binomial(3*n,n-k)*(n*(11*k+5)-2*k(k+1))/(n*(2*n+k+1)) for n >= 1. See Kuba, Corollary 1, p. 6.
O.g.f.: A(x) = (1/x)*(B(x) - 2)/(B(x) - 1), where B(x) = Sum_{n >= 0} 2*(3*n)!/((2*n+1)!*((n+1)!))*x^n is the o.g.f. of A000139. (End)

Extensions

More terms from F. Chapoton, May 26 2016