A378026 Number of simple lattice paths, steps (-1,0,0),(0,-1,0),(0,0,-1), of length 3n from (n,n,n) to the origin, never returning to the diagonal x = y = z before the origin.
1, 6, 54, 816, 14814, 295812, 6262488, 137929392, 3125822238, 72383434332, 1704669773652, 40693683620448, 982302086191752, 23933136140685648, 587728374471479952, 14530886841268923264, 361374588105759096606, 9033515437023805672044, 226844689948433272890396, 5719461854507320708714464
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..701
- Markus Kuba and Alois Panholzer, Lattice paths and the diagonal of the cube, arXiv:2411.03930 [math.CO], 2024.
Programs
-
Maple
b:= proc(n) option remember; (3*n)!/(n!)^3 end: a:= proc(n) option remember; b(n)-add(a(n-i)*b(i), i=1..n-1) end: seq(a(n), n=0..22); # Alois P. Heinz, Nov 15 2024
-
Mathematica
nmax = 20; CoefficientList[Series[2 - 1/Hypergeometric2F1[1/3, 2/3, 1, 27*x], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 15 2024 *)
Formula
G.f.: 2 - 1/P(z) where P(z) = 2F1(1/3,2/3;1;27z).
INVERTi transform of A006480.
Extensions
More terms from Vaclav Kotesovec, Nov 15 2024
Comments