Miquel Cerda has authored 13 sequences. Here are the ten most recent ones:
A385893
Cycle of length 130 in the dynamical system A385938 starting from 26.
Original entry on oeis.org
26, 61, 41, 96, 64, 43, 29, 68, 159, 106, 71, 166, 111, 74, 173, 404, 943, 629, 1468, 979, 653, 1524, 1016, 2371, 1581, 1054, 703, 469, 313, 209, 488, 1139, 2658, 1772, 4135, 2757, 1838, 4289, 10008, 6672, 4448, 10379, 24218, 56509, 37673, 87904, 58603, 39069, 26046, 17364
Offset: 0
Starting from 26: f(26) = (7*26+1)/3 = 61, f(61) = (2*61+1)/3 = 41, continuing this process yields the 130-element cycle.
Cf.
A385938 (the function defining this dynamical system).
-
f[x_] := Which[Mod[x, 3] == 0, 2*x/3, Mod[x, 3] == 1, (2*x + 1)/3, Mod[x, 3] == 2, (7*x + 1)/3]; NestList[f, 26, 129]
-
my(v=vector(130)); v[1]=26; for(i=2,130, x=v[i-1]; v[i]=if(x%3==0,2*x/3,if(x%3==1,(2*x+1)/3,(7*x+1)/3))); v;
A385938
a(n) = 2*n/3 if n == 0 (mod 3), (2*n+1)/3 if n == 1 (mod 3), (7*n+1)/3 if n == 2 (mod 3).
Original entry on oeis.org
0, 1, 5, 2, 3, 12, 4, 5, 19, 6, 7, 26, 8, 9, 33, 10, 11, 40, 12, 13, 47, 14, 15, 54, 16, 17, 61, 18, 19, 68, 20, 21, 75, 22, 23, 82, 24, 25, 89, 26, 27, 96, 28, 29, 103, 30, 31, 110, 32, 33, 117, 34, 35, 124, 36, 37, 131, 38, 39, 138, 40, 41, 145, 42, 43, 152, 44, 45, 159
Offset: 0
a(0) = 2*0/3 = 0. a(1) = (2*1+1)/3 = 1. a(2) = (7*2+1)/3 = 5. a(3) = 2*3/3 = 2.
Cf.
A385893 (cycle of length 130 in this dynamical system).
-
a[x_] := Which[Mod[x, 3] == 0, 2*x/3, Mod[x, 3] == 1, (2*x + 1)/3, Mod[x, 3] == 2, (7*x + 1)/3]; Table[a[n], {n, 0, 50}]
-
a(n) = if(n%3==0, 2*n/3, if(n%3==1, (2*n+1)/3, (7*n+1)/3))
-
def A385938(n):
q, r = divmod(n,3)
return (q<<1)+r if r<2 else 7*q+5 # Chai Wah Wu, Jul 17 2025
A382531
Number of n-digit base-10 numbers whose digit sum is equal to ceiling(9*n/2).
Original entry on oeis.org
1, 9, 70, 615, 5520, 50412, 468448, 4379055, 41395240, 392406145, 3748943890, 35866068766, 345143007910, 3323483518810, 32150758083580, 311088525668335, 3021445494584902, 29344719005694973, 285904843977651598, 2785022004925340460, 27203012941819689340
Offset: 1
a(2) = 9, the 2-digit numbers with digit sum 9 are: 18, 27, 36, 45, 54, 63, 72, 81, 90.
Cf.
A210736 (analogous for base-2 digits).
Cf.
A025015 (maximal coefficient of (1+...+x^9)^n).
-
b:= proc(n, s, t) option remember; `if`(9*n b(n, ceil(9*n/2), 1):
seq(a(n), n=1..23); # Alois P. Heinz, Apr 12 2025
A289762
Triangular array T(m,k) = (m+1-k)^2 + k - 1 with m (row) >= 1 and k (column) >= 1, read by rows.
Original entry on oeis.org
1, 1, 4, 2, 2, 4, 9, 5, 3, 3, 5, 9, 16, 10, 6, 4, 4, 6, 10, 16, 25, 17, 11, 7, 5, 5, 7, 11, 17, 25, 36, 26, 18, 12, 8, 6, 6, 8, 12, 18, 26, 36, 49, 37, 27, 19, 13, 9, 7, 7, 9, 13, 19, 27, 37, 49, 64, 50, 38, 28, 20, 14, 10, 8, 8, 10, 14, 20, 28, 38, 50, 64, 81, 65, 51, 39, 29, 21, 15, 11, 9
Offset: 1
The m-th row start and end: T(m,1) = m^2, ..., T(m,2m) = m^2.
In general T(m,k) = T(m,2m+1-k).
m\k 1 2 3 4 5 6 7 8 9 10
1 1, 1,
2 4, 2, 2, 4
3 9, 5, 3, 3, 5, 9
4 16, 10, 6, 4, 4, 6, 10, 16
5 25, 17, 11, 7, 5, 5, 7, 11, 17, 25
6 36, 26, 18, 12, 8, 6, 6, 8, 12, 18, ...
7 49, 37, 27, 19, 13, 9, 7, 7, 9, 13, ...
8 64, 50, 38, 28, 20, 14, 10, 8, 8, 10, ...
9 81, 65, 51, 39, 29, 21, 15, 11, 9, 9, ...
10 100, 82, 66, 52, 40, 30 22, 16, 12, 10, ...
The T(m,k) sequence as an isosceles triangle:
1 1
4 2 2 4
9 5 3 3 5 9
16 10 6 4 4 6 10 16
25 17 11 7 5 5 7 11 17 25
36 26 18 12 8 6 6 8 12 18 26 36
49 37 27 19 13 9 7 7 9 13 19 27 37 49
64 50 38 28 20 14 10 8 8 1 14 20 28 38 50 64
81 65 51 39 29 21 15 11 9 9 11 15 21 29 39 51 65 81
100 82 66 52 40 30 22 16 12 10 10 12 16 22 30 40 52 66 82 100
A289642
Number of 2-digit numbers whose digits add up to n.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1
n(5) = 5 because there are 5 numbers whose digits sum = 5 (14, 23, 32, 41, 50).
Cf.
A071817 (3-digit numbers),
A090579 (4-digit numbers),
A090580 (5-digit numbers),
A090581 (6-digit numbers),
A278969 (7-digit numbers),
A278971 (8-digit numbers),
A289354 (9-digit numbers),
A053188,
A074989,
A004739,
A066635,
A154840,
A249121.
A289410
Irregular triangular array T(m,k) with m (row) >= 1 and k (column) >= 1 read by rows: number of m-digit numbers whose digit sum is k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 54, 61, 66, 69, 70, 69, 66, 61, 54, 45, 36, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 120, 165, 219, 279, 342, 405, 465, 519, 564, 597, 615, 615, 597, 564, 519, 465, 405, 342, 279, 219, 165, 120, 84
Offset: 1
The irregular triangle T(m,k) begins:
m\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 1 1 1 1 1 1 1 1 1;
2 1 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3 2 1;
3 1 3 6 10 15 21 28 36 45 54 61 66 69 70 69 66 61 54 45,...;
4 1 4 10 20 35 56 84 120 165 219 279 342 405 465,...;
5 1 5 15 35 70 126 210 330 495 714 992 1330 1725,...;
6 1 6 21 56 126 252 462 792 1287 2001 2992,...;
etc.
Row m(2), column k(4) there are 4 numbers of 2-digits whose digits sum = 4: 13, 22, 31, 40.
The row sums = 9*10^(m-1) =
A052268(n). The row lengths = 9*m =
A008591(n). The middle diagonal =
A071976. (row m=3) =
A071817, (row m=4) =
A090579, (row m=5) =
A090580, (row m=6) =
A090581, (row m=7) =
A278969, (row m=8) =
A278971, (row m=9) =
A289354, (column k=3) =
A000217, (column k=4) =
A000292, (column k=5) =
A000332, (column k=6) =
A000389, (column k=7) =
A000579, (column k=8) =
A000580, (column k=9) =
A000581, (column k=10) =
A035927.
-
row:= proc(m) local g; g:= normal((1 - x^10)^(m-1)*(x - x^10)/(1 - x)^m);
seq(coeff(g,x,j),j=1..9*m) end proc:
seq(row(k),k=1..5); # Robert Israel, Jul 19 2017
A289380
Number of 10-digit numbers whose sum of digits is n.
Original entry on oeis.org
1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48619, 92359, 167815, 293215, 494725, 808753, 1284481, 1986490, 2997280, 4419415, 6376951, 9015769, 12502435, 17021245, 22769185, 29948644, 38757862, 49379275, 61966135, 76628035, 93416221, 112309741, 133203565, 155899810, 180103120
Offset: 1
a(2)=10: 1000000001, 1000000010, 1000000100, 1000001000, 1000010000, 1000100000, 1001000000, 1010000000, 110000000, 200000000.
-
CoefficientList[Series[(1 - x^10)^9*(1 - x^9)/(1 - x)^10, {x, 0, 40}],
x] (* Wesley Ivan Hurt, Jul 09 2017 *)
A289354
Number of 9-digit numbers whose sum of digits is n.
Original entry on oeis.org
1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24309, 43741, 75465, 125445, 201675, 314523, 477015, 705012, 1017225, 1435005, 1981845, 2682559, 3562131, 4644255, 5949615, 7493982, 9286233, 11326425, 13604085, 16096905, 18770031, 21576079, 24455955, 27340500, 30152925, 32811945, 35235465, 37344615, 39067875, 40344975, 41130255, 41395240, 41130255, 40344975, 39067875, 37344615, 35235465, 32811945, 30152925, 27340500, 24455955, 21576079, 18770031, 16096905, 13604085, 11326425, 9286233, 7493982, 5949615, 4644255, 3562131, 2682559, 1981845, 1435005, 1017225, 705012, 477015, 314523, 201675, 125445, 75465, 43741, 24309, 12870, 6432, 3003, 1287, 495, 165, 45, 9, 1
Offset: 1
a(2)=9: 100000001, 100000010, 100000100, 100001000, 100010000, 100100000, 101000000, 11000000, 20000000.
-
With[{d = 9}, Rest@ CoefficientList[Series[(x - x^10)/(1 - x) ((1 - x^10)/(1 - x))^(d - 1), {x, 0, 9 d}], x]] (* Michael De Vlieger, Jul 04 2017 *)
A277757
a(n) = 2^(6*n + 1).
Original entry on oeis.org
2, 128, 8192, 524288, 33554432, 2147483648, 137438953472, 8796093022208, 562949953421312, 36028797018963968, 2305843009213693952, 147573952589676412928, 9444732965739290427392, 604462909807314587353088, 38685626227668133590597632
Offset: 0
A277426
a(n) = 2^(6n+5).
Original entry on oeis.org
32, 2048, 131072, 8388608, 536870912, 34359738368, 2199023255552, 140737488355328, 9007199254740992, 576460752303423488, 36893488147419103232, 2361183241434822606848, 151115727451828646838272, 9671406556917033397649408, 618970019642690137449562112, 39614081257132168796771975168
Offset: 0
-
CoefficientList[Series[32 / (1 - 64 x), {x, 0, 20}], x] (* Vincenzo Librandi, Oct 30 2016 *)
Comments