cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A289410 Irregular triangular array T(m,k) with m (row) >= 1 and k (column) >= 1 read by rows: number of m-digit numbers whose digit sum is k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 54, 61, 66, 69, 70, 69, 66, 61, 54, 45, 36, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 120, 165, 219, 279, 342, 405, 465, 519, 564, 597, 615, 615, 597, 564, 519, 465, 405, 342, 279, 219, 165, 120, 84
Offset: 1

Views

Author

Miquel Cerda, Jul 05 2017

Keywords

Comments

The m-th row is palindromic; T(m,k) = T(m,9*m+1-k).

Examples

			The irregular triangle T(m,k) begins:
m\k  1  2  3  4  5   6   7   8   9   10   11  12   13   14  15  16  17  18  19
1    1  1  1  1  1   1   1   1   1;
2    1  2  3  4  5   6   7   8   9    9    8   7    6    5   4   3   2   1;
3    1  3  6  10 15  21  28  36  45   54   61  66   69   70  69  66  61  54 45,...;
4    1  4  10 20 35  56  84  120 165  219  279 342  405  465,...;
5    1  5  15 35 70  126 210 330 495  714  992 1330 1725,...;
6    1  6  21 56 126 252 462 792 1287 2001 2992,...;
etc.
Row m(2), column k(4) there are 4 numbers of 2-digits whose digits sum = 4: 13, 22, 31, 40.
		

Crossrefs

The row sums = 9*10^(m-1) = A052268(n). The row lengths = 9*m = A008591(n). The middle diagonal = A071976. (row m=3) = A071817, (row m=4) = A090579, (row m=5) = A090580, (row m=6) = A090581, (row m=7) = A278969, (row m=8) = A278971, (row m=9) = A289354, (column k=3) = A000217, (column k=4) = A000292, (column k=5) = A000332, (column k=6) = A000389, (column k=7) = A000579, (column k=8) = A000580, (column k=9) = A000581, (column k=10) = A035927.

Programs

  • Maple
    row:= proc(m) local g; g:= normal((1 - x^10)^(m-1)*(x - x^10)/(1 - x)^m);
    seq(coeff(g,x,j),j=1..9*m) end proc:
    seq(row(k),k=1..5); # Robert Israel, Jul 19 2017

Formula

G.f. of row m: (1 - x^10)^(m-1)*(x - x^10)/(1 - x)^m.
G.f. as array: (1+x+x^2)*(1+x^3+x^6)*x*y/(1-y*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9)). - Robert Israel, Jul 19 2017

Extensions

Edited by Robert Israel, Jul 19 2017

A289380 Number of 10-digit numbers whose sum of digits is n.

Original entry on oeis.org

1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48619, 92359, 167815, 293215, 494725, 808753, 1284481, 1986490, 2997280, 4419415, 6376951, 9015769, 12502435, 17021245, 22769185, 29948644, 38757862, 49379275, 61966135, 76628035, 93416221, 112309741, 133203565, 155899810, 180103120
Offset: 1

Views

Author

Miquel Cerda, Jul 04 2017

Keywords

Comments

The 10-digit numbers distributed according to the sum of their digits n.
The sequence is symmetrical; a(n) = a(91 - n), 1 <= n <= 91.

Examples

			a(2)=10: 1000000001, 1000000010, 1000000100, 1000001000, 1000010000, 1000100000, 1001000000, 1010000000, 110000000, 200000000.
		

Crossrefs

Cf. A071817 (3-digit numbers), A090579 (4-digit numbers), A090580 (5-digit numbers), A090581 (6-digit numbers), A278969 (7-digit numbers), A278971 (8-digit numbers), A289354 (9-digit numbers).

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^10)^9*(1 - x^9)/(1 - x)^10, {x, 0, 40}],
    x] (* Wesley Ivan Hurt, Jul 09 2017 *)

Formula

G.f.: (1 - x^10)^9*(x - x^10)/(1 - x)^10.

A289642 Number of 2-digit numbers whose digits add up to n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Miquel Cerda, Jul 09 2017

Keywords

Comments

The 2-digit numbers distributed according to the sum of their digits n.
Symmetrical sequence; a(n) = a(19 - n).

Examples

			n(5) = 5 because there are 5 numbers whose digits sum = 5 (14, 23, 32, 41, 50).
		

Crossrefs

Cf. A071817 (3-digit numbers), A090579 (4-digit numbers), A090580 (5-digit numbers), A090581 (6-digit numbers), A278969 (7-digit numbers), A278971 (8-digit numbers), A289354 (9-digit numbers), A053188, A074989, A004739, A066635, A154840, A249121.

Formula

G.f.: (1 - x^10)*(x - x^10)/(1 - x)^2.
a(n) = (19-abs(n-9)-abs(n-10))/2 for n=1..18. - Wesley Ivan Hurt, Jul 09 2017
Showing 1-3 of 3 results.