A000246
Number of permutations in the symmetric group S_n that have odd order.
Original entry on oeis.org
1, 1, 1, 3, 9, 45, 225, 1575, 11025, 99225, 893025, 9823275, 108056025, 1404728325, 18261468225, 273922023375, 4108830350625, 69850115960625, 1187451971330625, 22561587455281875, 428670161650355625, 9002073394657468125, 189043541287806830625
Offset: 0
For the Wallis numerators, denominators and partial products see A001900. - _Wolfdieter Lang_, Dec 06 2017
- H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 87.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
- Ron M. Adin, Pál Hegedűs, and Yuval Roichman, Descent set distribution for permutations with cycles of only odd or only even lengths, arXiv:2502.03507 [math.CO], 2025. See p. 2.
- Joel Barnes, Conformal welding of uniform random trees, Ph. D. Dissertation, Univ. Washington, 2014.
- Olivier Bernardi, Bertrand Duplantier and Philippe Nadeau, A Bijection Between Well-Labelled Positive Paths and Matchings, Séminaire Lotharingien de Combinatoire (2010), volume 63, Article B63e.
- William Y. C. Chen, Breaking Cycles, the Odd Versus the Even, 2023.
- A. Edelman and M. La Croix, The Singular Values of the GUE (Less is More), arXiv preprint arXiv:1410.7065 [math.PR], 2014-2015. See Table 1.
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- A. Ghitza and A. McAndrew, Experimental evidence for Maeda's conjecture on modular forms, arXiv preprint arXiv:1207.3480 [math.NT], 2012.
- Y. Cha, Closed form solutions of difference equations (2011) PhD Thesis, Florida State University, page 24
- Dmitry Kruchinin, Integer properties of a composition of exponential generating functions, arXiv:1211.2100 [math.NT], 2012.
- Zhicong Lin, David G.L. Wang, and Tongyuan Zhao, A decomposition of ballot permutations, pattern avoidance and Gessel walks, arXiv:2103.04599 [math.CO], 2021.
- Kenneth M. Monks, An Elementary Proof of the Explicit Formula for the Möbius Number of the Odd Partition Poset, J. Int. Seq., Vol. 21 (2018), Article 18.9.6.
- Julia A. Palacios, Anand Bhaskar, Filippo Disanto, and Noah A. Rosenberg, Enumeration of binary trees compatible with a perfect phylogeny, J. Math. Biol. 84 (2022), 54.
- Qingchun Ren, Ordered Partitions and Drawings of Rooted Plane Trees, arXiv preprint arXiv:1301.6327 [math.CO], 2013. See Lemma 15.
- Marko Riedel, et al. From combinatorial class to recurrence to closed form, Mathematics Stack Exchange.
- Jonathan Sondow, A faster product for Pi and a new integral for ln(Pi/2), arXiv:math/0401406 [math.NT], 2004.
- Jonathan Sondow, A faster product for Pi and a new integral for ln(Pi/2), Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
- Sam Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv:1810.00993 [math.CO], 2018.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 108.
- Allen Wang, Permutations with Up-Down Signatures of Nonnegative Partial Sums, MIT PRIMES Conference (2018).
- David G. L. Wang and T. Zhao, The peak and descent statistics over ballot permutations, arXiv:2009.05973 [math.CO], 2020.
- Index entries for sequences related to groups
-
a000246 n = a000246_list !! n
a000246_list = 1 : 1 : zipWith (+)
(tail a000246_list) (zipWith (*) a000246_list a002378_list)
-- Reinhard Zumkeller, Feb 27 2012
-
I:=[1,1]; [n le 2 select I[n] else Self(n-1)+(n^2-5*n+6)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, May 02 2015
-
a:= proc(n) option remember; `if`(n<2, 1,
a(n-1) +(n-1)*(n-2)*a(n-2))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 14 2018
-
a[n_] := a[n] = a[n-1]*(n+Mod[n, 2]-1); a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 21 2011, after Pari *)
a[n_] := a[n] = (n-2)*(n-3)*a[n-2] + a[n-1]; a[0] := 0; a[1] := 1; Table[a[i], {i, 0, 20}] (* or *) RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(n-2)*(n-3)a[n-2]+a[n-1]}, a, {n, 20}] (* G. C. Greubel, May 01 2015 *)
CoefficientList[Series[Sqrt[(1+x)/(1-x)], {x, 0, 20}], x]*Table[k!, {k, 0, 20}] (* Stefano Spezia, Oct 07 2018 *)
-
a(n)=if(n<1,!n,a(n-1)*(n+n%2-1))
-
Vec( serlaplace( sqrt( (1+x)/(1-x) + O(x^55) ) ) )
-
a(n)=prod(k=3,n,k+k%2-1) \\ Charles R Greathouse IV, May 01 2015
-
a(n)=(n!/(n\2)!>>(n\2))^2/if(n%2,n,1) \\ Charles R Greathouse IV, May 01 2015
A258829
Number T(n,k) of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 11, 3, 1, 0, 16, 38, 28, 4, 1, 0, 61, 263, 130, 62, 5, 1, 0, 272, 1260, 1263, 340, 129, 6, 1, 0, 1385, 10871, 8090, 4734, 819, 261, 7, 1, 0, 7936, 66576, 88101, 33855, 16066, 1890, 522, 8, 1, 0, 50521, 694599, 724189, 495371, 127538, 52022, 4260, 1040, 9, 1
Offset: 0
p = 1432 is counted by T(4,2) because the up-down signature of 0,p = 01432 is 1,1,-1,-1 with partial sums 1,2,1,0.
q = 4321 is not counted by any T(4,k) because the up-down signature of 0,q = 04321 is 1,-1,-1,-1 with partial sums 1,0,-1,-2.
T(4,1) = 5: 2143, 3142, 3241, 4132, 4231.
T(4,2) = 11: 1324, 1423, 1432, 2134, 2314, 2413, 2431, 3124, 3412, 3421, 4123.
T(4,3) = 3: 1243, 1342, 2341.
T(4,4) = 1: 1234.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 5, 11, 3, 1;
0, 16, 38, 28, 4, 1;
0, 61, 263, 130, 62, 5, 1;
0, 272, 1260, 1263, 340, 129, 6, 1;
0, 1385, 10871, 8090, 4734, 819, 261, 7, 1;
Columns k=0-10 give:
A000007,
A000111 for n>0,
A259213,
A316390,
A316391,
A316392,
A316393,
A316394,
A316395,
A316396,
A316397.
-
b:= proc(u, o, c, k) option remember;
`if`(c<0 or c>k, 0, `if`(u+o=0, 1,
add(b(u-j, o-1+j, c+1, k), j=1..u)+
add(b(u+j-1, o-j, c-1, k), j=1..o)))
end:
A:= (n, k)-> b(n, 0$2, k):
T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
-
b[u_, o_, c_, k_] := b[u, o, c, k] = If[c < 0 || c > k, 0, If[u + o == 0, 1, Sum[b[u - j, o - 1 + j, c + 1, k], {j, 1, u}] + Sum[b[u + j - 1, o - j, c - 1, k], {j, 1, o}]]];
A[n_, k_] := b[n, 0, 0, k];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)
A262124
Number A(n,k) of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 3, 5, 0, 1, 1, 1, 3, 8, 16, 0, 1, 1, 1, 3, 9, 40, 61, 0, 1, 1, 1, 3, 9, 44, 162, 272, 0, 1, 1, 1, 3, 9, 45, 219, 1134, 1385, 0, 1, 1, 1, 3, 9, 45, 224, 1445, 6128, 7936, 0, 1, 1, 1, 3, 9, 45, 225, 1568, 9985, 55152, 50521, 0
Offset: 0
p = 1423 is counted by T(4,1) because the up-down signature of p = 1423 is 1,-1,1 with partial sums 1,0,1.
q = 1432 is not counted by any T(4,k) because the up-down signature of q = 1432 is 1,-1,-1 with partial sums 1,0,-1.
A(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
A(4,2) = 8: 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.
A(4,3) = 9: 1234, 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 3, 3, 3, 3, 3, ...
0, 5, 8, 9, 9, 9, 9, 9, ...
0, 16, 40, 44, 45, 45, 45, 45, ...
0, 61, 162, 219, 224, 225, 225, 225, ...
0, 272, 1134, 1445, 1568, 1574, 1575, 1575, ...
-
b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, x^c,
(p-> add(coeff(p, x, i)*x^max(i, c), i=0..degree(p)))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
A:= (n,k)-> `if`(n=0, 1, (p-> add(coeff(p, x, i), i=0..min(n, k))
)(add(b(j-1, n-j, 0), j=1..n))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[u_, o_, c_] := b[u, o, c] = If[c<0, 0, If[u+o == 0, x^c, Function[p, Sum[ Coefficient[p, x, i]*x^Max[i, c], {i, 0, Exponent[p, x]}]][Sum[b[u-j, o - 1+j, c-1], {j, 1, u}] + Sum[b[u+j-1, o-j, c+1], {j, 1, o}]]]]; A[n_, k_] := If[n==0, 1, Function[p, Sum[Coefficient[p, x, i], {i, 0, Min[n, k]}]][ Sum[b[j-1, n-j, 0], {j, 1, n}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
A321280
Number T(n,k) of permutations p of [n] with exactly k descents such that the up-down signature of p has nonnegative partial sums; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 8, 1, 22, 22, 1, 52, 172, 1, 114, 856, 604, 1, 240, 3488, 7296, 1, 494, 12746, 54746, 31238, 1, 1004, 43628, 330068, 518324, 1, 2026, 143244, 1756878, 5300418, 2620708, 1, 4072, 457536, 8641800, 43235304, 55717312, 1, 8166, 1434318, 40298572, 309074508, 728888188, 325024572
Offset: 0
Triangle T(n,k) begins:
1;
1;
1;
1, 2;
1, 8;
1, 22, 22;
1, 52, 172;
1, 114, 856, 604;
1, 240, 3488, 7296;
1, 494, 12746, 54746, 31238;
1, 1004, 43628, 330068, 518324;
1, 2026, 143244, 1756878, 5300418, 2620708;
1, 4072, 457536, 8641800, 43235304, 55717312;
1, 8166, 1434318, 40298572, 309074508, 728888188, 325024572;
1, 16356, 4438540, 180969752, 2026885824, 7589067592, 8460090160;
...
- Alois P. Heinz, Rows n = 0..100, flattened
- S. Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv preprint arXiv:1810.00993 [math.CO], 2018.
- David G. L. Wang, T. Zhao, The peak and descent statistics over ballot permutations, arXiv:2009.05973 [math.CO], 2020.
-
b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, 1/x,
add(expand(x*b(u-j, o-1+j, c-1)), j=1..u)+
add(b(u+j-1, o-j, c+1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(`if`(n=0, 1, b(n, 0, 1))):
seq(T(n), n=0..14);
-
b[u_, o_, c_] := b[u, o, c] = If[c < 0, 0, If[u + o == 0, 1/x, Sum[Expand[ x*b[u - j, o - 1 + j, c - 1]], {j, 1, u}] + Sum[b[u + j - 1, o - j, c + 1], {j, 1, o}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ If[n == 0, 1, b[n, 0, 1]]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 08 2018, after Alois P. Heinz *)
A262127
Number of permutations p of [2n] such that the up-down signature of p has nonnegative partial sums with a maximal value of n.
Original entry on oeis.org
1, 1, 3, 57, 778, 47673, 1477381, 196352061, 10896848134, 2539183745028, 220995092995233, 79875004816604671, 10032237471596350240, 5198811549997063847059, 890008776794671492878641, 626002734896306246681963237, 140112228518254335504033414806
Offset: 0
A320976
Number of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value of two.
Original entry on oeis.org
0, 1, 3, 24, 101, 862, 4743, 47216, 322039, 3744368, 30517747, 409498400, 3884904379, 59360223088, 642766195887, 11046815693568, 134468538125519, 2571506053105408, 34764547687430955, 732881798335913984, 10895866774781276947, 251184536044504689152
Offset: 2
-
b:= proc(u, o, c) option remember; `if`(c<0 or c>2, 0, `if`(u+o=0,
x^c, (p-> add(coeff(p, x, i)*x^max(i, c), i=0..2))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
a:= n-> coeff(add(b(j-1, n-j, 0), j=1..n), x, 2):
seq(a(n), n=2..30);
A320977
Number of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value of three.
Original entry on oeis.org
0, 1, 4, 57, 311, 3857, 27589, 355751, 3185258, 44435241, 479927081, 7311147055, 92603527295, 1540826943617, 22398016781688, 405865410503155, 6658173453910401, 130871330990044897, 2390845313044048301, 50759828657781860167, 1021623022236754343662
Offset: 3
-
b:= proc(u, o, c) option remember; `if`(c<0 or c>3, 0, `if`(u+o=0,
x^c, (p-> add(coeff(p, x, i)*x^max(i, c), i=0..3))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
a:= n-> coeff(add(b(j-1, n-j, 0), j=1..n), x, 3):
seq(a(n), n=3..30);
A320978
Number of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value of four.
Original entry on oeis.org
0, 1, 5, 123, 778, 14126, 111811, 1957924, 18846572, 342736488, 3904186779, 75626480215, 996651530998, 20739117286767, 310506509296055, 6952893022274589, 116561453850733664, 2805243168612301480, 52046467944203248643, 1342921799608903158968
Offset: 4
-
b:= proc(u, o, c) option remember; `if`(c<0 or c>4, 0, `if`(u+o=0,
x^c, (p-> add(coeff(p, x, i)*x^max(i, c), i=0..4))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
a:= n-> coeff(add(b(j-1, n-j, 0), j=1..n), x, 4):
seq(a(n), n=4..30);
A320979
Number of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value of five.
Original entry on oeis.org
0, 1, 6, 254, 1835, 47673, 416221, 9565156, 99383961, 2250472801, 27333591309, 635688426842, 8878319017022, 215812184750821, 3416973303551969, 87455366666951644, 1550782738938548075, 41903722165381482287, 823596208419940694670, 23503436481574417378942
Offset: 5
-
b:= proc(u, o, c) option remember; `if`(c<0 or c>5, 0, `if`(u+o=0,
x^c, (p-> add(coeff(p, x, i)*x^max(i, c), i=0..5))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
a:= n-> coeff(add(b(j-1, n-j, 0), j=1..n), x, 5):
seq(a(n), n=5..30);
A320980
Number of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value of six.
Original entry on oeis.org
0, 1, 7, 514, 4189, 154261, 1477381, 44169020, 493190771, 13821362271, 177705152975, 4949371839867, 72355179873697, 2058206624313873, 33818827542140211, 995975339452380880, 18206096557050382759, 558929622195992201388, 11264684856271486133087
Offset: 6
-
b:= proc(u, o, c) option remember; `if`(c<0 or c>6, 0, `if`(u+o=0,
x^c, (p-> add(coeff(p, x, i)*x^max(i, c), i=0..6))(add(
b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
end:
a:= n-> coeff(add(b(j-1, n-j, 0), j=1..n), x, 6):
seq(a(n), n=6..30);
Showing 1-10 of 14 results.
Comments