cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A000246 Number of permutations in the symmetric group S_n that have odd order.

Original entry on oeis.org

1, 1, 1, 3, 9, 45, 225, 1575, 11025, 99225, 893025, 9823275, 108056025, 1404728325, 18261468225, 273922023375, 4108830350625, 69850115960625, 1187451971330625, 22561587455281875, 428670161650355625, 9002073394657468125, 189043541287806830625
Offset: 0

Views

Author

Keywords

Comments

Michael Reid (mreid(AT)math.umass.edu) points out that the e.g.f. for the number of permutations of odd order can be obtained from the cycle index for S_n, F(Y; X1, X2, X3, ... ) := e^(X1 Y + X2 Y^2/2 + X3 Y^3/3 + ... ) and is F(Y, 1, 0, 1, 0, 1, 0, ... ) = sqrt((1 + Y)/(1 - Y)).
a(n) appears to be the number of permutations on [n] whose up-down signature has nonnegative partial sums. For example, the up-down signature of (2,4,5,1,3) is (+1,+1,-1,+1) with nonnegative partial sums 1,2,1,2 and a(3)=3 counts (1,2,3), (1,3,2), (2,3,1). - David Callan, Jul 14 2006
This conjecture has been confirmed, see Bernardi, Duplantier, Nadeau link.
a(n) is the number of permutations of [n] for which all left-to-right minima occur in odd locations in the permutation. For example, a(3)=3 counts 123, 132, 231. Proof: For such a permutation of length 2n, you can append 1,2,..., or 2n+1 (2n+1 choices) and increase by 1 the original entries that weakly exceed the appended entry. This gives all such permutations of length 2n+1. But if the original length is 2n-1, you cannot append 1 (for then 1 would be a left-to-right min in an even location) so you can only append 2,3,..., or 2n (2n-1 choices). This count matches the given recurrence relation a(2n)=(2n-1)a(2n-1), a(2n+1)=(2n+1)a(2n). - David Callan, Jul 22 2008
a(n) is the n-th derivative of exp(arctanh(x)) at x = 0. - Michel Lagneau, May 11 2010
a(n) is the absolute value of the Moebius number of the odd partition poset on a set of n+1 points, where the odd partition poset is defined to be the subposet of the partition poset consisting of only partitions using odd part size (as well as the maximum element for n even). - Kenneth M Monks, May 06 2012
Number of permutations in S_n in which all cycles have odd length. - Michael Somos, Mar 17 2019
a(n) is the number of unranked labeled binary trees compatible with the binary labeled perfect phylogeny that, among possible two-leaf binary labeled perfect phylogenies for a sample of size n+2, is compatible with the smallest number of unranked labeled binary trees. - Noah A Rosenberg, Jan 16 2025

Examples

			For the Wallis numerators, denominators and partial products see A001900. - _Wolfdieter Lang_, Dec 06 2017
		

References

  • H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 87.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are A001818 and A079484.
Row sums of unsigned triangle A049218 and of A111594, A262125.
Main diagonal of A262124.
Cf. A002019.

Programs

  • Haskell
    a000246 n = a000246_list !! n
    a000246_list = 1 : 1 : zipWith (+)
       (tail a000246_list) (zipWith (*) a000246_list a002378_list)
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else Self(n-1)+(n^2-5*n+6)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, May 02 2015
  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          a(n-1) +(n-1)*(n-2)*a(n-2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 14 2018
  • Mathematica
    a[n_] := a[n] = a[n-1]*(n+Mod[n, 2]-1); a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 21 2011, after Pari *)
    a[n_] := a[n] = (n-2)*(n-3)*a[n-2] + a[n-1]; a[0] := 0; a[1] := 1; Table[a[i], {i, 0, 20}] (* or *)  RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(n-2)*(n-3)a[n-2]+a[n-1]}, a, {n, 20}] (* G. C. Greubel, May 01 2015 *)
    CoefficientList[Series[Sqrt[(1+x)/(1-x)], {x, 0, 20}], x]*Table[k!, {k, 0, 20}] (* Stefano Spezia, Oct 07 2018 *)
  • PARI
    a(n)=if(n<1,!n,a(n-1)*(n+n%2-1))
    
  • PARI
    Vec( serlaplace( sqrt( (1+x)/(1-x) + O(x^55) ) ) )
    
  • PARI
    a(n)=prod(k=3,n,k+k%2-1) \\ Charles R Greathouse IV, May 01 2015
    
  • PARI
    a(n)=(n!/(n\2)!>>(n\2))^2/if(n%2,n,1) \\ Charles R Greathouse IV, May 01 2015
    

Formula

E.g.f.: sqrt(1-x^2)/(1-x) = sqrt((1+x)/(1-x)).
a(2*k) = (2*k-1)*a(2*k-1), a(2*k+1) = (2*k+1)*a(2*k), for k >= 0, with a(0) = 1.
Let b(1)=0, b(2)=1, b(k+2)=b(k+1)/k + b(k); then a(n+1) = n!*b(n+2). - Benoit Cloitre, Sep 03 2002
a(n) = Sum_{k=0..floor((n-1)/2)} (2k)! * C(n-1, 2k) * a(n-2k-1) for n > 0. - Noam Katz (noamkj(AT)hotmail.com), Feb 27 2001
Also successive denominators of Wallis's approximation to Pi/2 (unreduced): 1/1 * 2/1 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * .., for n >= 1.
D-finite with recurrence: a(n) = a(n-1) + (n-1)*(n-2)*a(n-2). - Benoit Cloitre, Aug 30 2003
a(n) is asymptotic to (n-1)!*sqrt(2*n/Pi). - Benoit Cloitre, Jan 19 2004
a(n) = n! * binomial(n-1, floor((n-1)/2)) / 2^(n-1), n > 0. - Ralf Stephan, Mar 22 2004
E.g.f.: e^atanh(x), a(n) = n!*Sum_{m=1..n} Sum_{k=m..n} 2^(k-m)*Stirling1(k,m) *binomial(n-1,k-1)/k!, n > 0, a(0)=1. - Vladimir Kruchinin, Dec 12 2011
G.f.: G(0) where G(k) = 1 + x*(4*k-1)/((2*k+1)*(x-1) - x*(x-1)*(2*k+1)*(4*k+1)/(x*(4*k+1) + 2*(x-1)*(k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jul 24 2012
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (2*k+1)/(1-x/(x - 1/(1 - (2*k+1)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: G(0), where G(k) = 1 + x*(2*k+1)/(1 - x*(2*k+1)/(x*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
For n >= 1, a(2*n) = (2*n-1)!!^2, a(2*n+1) = (2*n+1)*(2*n-1)!!^2. - Vladimir Shevelev, Dec 01 2013
E.g.f.: arcsin(x) - sqrt(1-x^2) + 1 for a(0) = 0, a(1) = a(2) = a(3) = 1. - G. C. Greubel, May 01 2015
Sum_{n>1} 1/a(n) = (L_0(1) + L_1(1))*Pi/2, where L is the modified Struve function. - Peter McNair, Mar 11 2022
From Peter Bala, Mar 29 2024: (Start)
a(n) = n! * Sum_{k = 0..n} (-1)^(n+k)*binomial(1/2, k)*binomial(-1/2, n-k).
a(n) = (1/4^n) * (2*n)!/n! * hypergeom([-1/2, -n], [1/2 - n], -1).
a(n) = n!/2^n * A063886(n). (End)

A162005 The EG1 triangle.

Original entry on oeis.org

1, 2, 1, 16, 28, 1, 272, 1032, 270, 1, 7936, 52736, 36096, 2456, 1, 353792, 3646208, 4766048, 1035088, 22138, 1, 22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1, 1903757312, 38188155904, 120536980224, 93989648000
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2009, Jul 02 2009, Aug 31 2009

Keywords

Comments

We define the EG1 matrix by EG1[2m-1,1] = 2*eta(2m-1) and the recurrence relation EG1[2m-1,n] = EG1[2m-1,n-1] - EG1[2m-3,n-1]/(n-1)^2 for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .., with eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. For the EG2[2m,n] coefficients see A008955.
The n-th term of the row coefficients EG1[1-2*m,n] for m = 1, 2, .., can be generated with REG1(1-2*m,n) = (-1)^(m+1)*2^(1-m)*ECGP(1-2*m, n)*(1/n)*4^(-n)*(2*n)!/((n-1)!)^2 . For information about the ECGP polynomials see A094665 and the examples below.
We define the o.g.f.s. of the REG1(1-2*m,n) by GFREG1(z,1-2*m) = sum(REG1(1-2*m,n)* z^(n-1), n=1..infinity) for m = 1, 2, .., with GFREG1(z,1-2*m) = (-1)^(m+1)* RG(z,1-2*m)/ (2^(2*m-1)*(1-z)^((2*m+1)/2)). The RG(z,1-2m) polynomials led to the EG1 triangle.
We used the coefficients of the A156919 and A094665 triangles to determine those of the EG1 triangle, see the Maple program. The A156919 triangle gives information about the sums SF(p) = sum(n^(p-1)*4^(-n)*z^(n-1)*(2*n)!/((n-1)!)^2, n=1..infinity) for p= 0, 1, 2, .. .
Contribution from Johannes W. Meijer, Nov 23 2009: (Start)
The EG1 matrix is related to the ED2 array A167560 because sum(EG1(2*m-1,n)*z^(2*m-1), m=1..infinity) = ((2*n-1)!/(4^(n-1)*(n-1)!^2))*int(sinh(y*(2*z))/cosh(y)^(2*n),y=0..infinity).
(End)
Appears to equal triangle A322230 with rows read in reverse order. Triangle A322230 describes the e.g.f. S(x,k) = Integral C(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1. - Paul D. Hanna, Dec 22 2018
Appears to equal triangle A325220, which has e.g.f. S(x,k) = -i * sn( i * Integral C(x,k) dx, k) such that C(x,k) = cn( i * Integral C(x,k) dx, k), where sn(x,k) and cn(x,k) are Jacobi Elliptic functions. - Paul D. Hanna, Apr 13 2019

Examples

			The first few rows of the EG1 triangle are :
[1]
[2, 1]
[16, 28, 1]
[272, 1032, 270, 1]
The first few RG(z,1-2*m) polynomials are:
RG(z,-1) = 1
RG(z,-3) = 2+z
RG(z,-5) = 16+28*z+z^2
RG(z,-7) = 272+1032*z+270*z^2+z^3
The first few GFREG1(z,1-2*m) are:
GFREG1(z,-1) = (1)*(1)/(2*(1-z)^(3/2))
GFREG1(z,-3) = (-1)*(2+z)/(2^3*(1-z)^(5/2))
GFREG1(z,-5) = (1)*(16+28*z+z^2)/( 2^5*(1-z)^(7/2))
GFREG1(z,-7) = (-1)*(272+1032*z+270*z^2+z^3)/(2^7*(1-z)^(9/2))
The first few REG1(1-2*m,n) are:
REG1(-1,n) = (1/1)*(1)*(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-3,n) = (-1/2)*(n) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-5,n) = (1/4) *(n+3*n^2) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-7,n) = (-1/8)*(4*n+15*n^2+15*n^3) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
The first few ECGP(1-2*m,n) polynomials are:
ECGP(-1,n) = 1
ECGP(-3,n) = n
ECGP(-5,n) = n+3*n^2
ECGP(-7,n) = 4*n+15*n^2+15*n^3
		

Crossrefs

A079484 equals the row sums.
A000182 (ZAG numbers), A162006 and A162007 equal the first three left hand columns.
A000012, A004004 (2x), A162008, A162009 and A162010 equal the first five right hand columns.
Related to A094665, A083061 and A156919 (DEF triangle).
Cf. A161198 [(1-x)^((-1-2*n)/2)], A008955 (EG2[2m, n])
Cf. A167560 (ED2 array).
Cf. A322230 (reversed rows), A325220.

Programs

  • Maple
    nmax:=7; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1) * (x+1)*T1(i-1, x+1)-2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1=0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1)*A156919(n-1, m-1) end do end do: for n from 0 to nmax do SF(n) := sum(A156919(n, k1)*z^k1, k1=0..n)/(2^(n+1)*(1-z)^((2*n+3)/2)) od: GFREG1(z, -1) := A156919(0, 0)*A094665 (0, 0) / (2*(1-z)^(3/2)): for m from 2 to nmax do GFREG1(z, 1-2*m) := simplify((-1)^(m+1)*2^(1-m)* sum(A094665(m-1, k2)*SF(k2), k2=1..m-1)) od: for m from 1 to mmax do g(m) := sort((numer ((-1)^(m+1)* GFREG1(z, 1-2*m))), ascending) od: for n from 1 to nmax do for m from 1 to n do a(n, m) := abs(coeff(g(n), z, m-1)) od: od: seq(seq(a(n, m), m=1..n), n=1..nmax);
    # Maple program edited by Johannes W. Meijer, Sep 25 2012

Formula

A different form of the recurrence relation is EG1[1-2*m,n] = (EG1[3-2*m,n]-EG1[3-2*m,n+1])* (n^2) for m = 2, 3, .., with EG1[ -1,n] = (1/n)*4^(-n)*((2*n)!/(n-1)!^2).

A002454 Central factorial numbers: a(n) = 4^n * (n!)^2.

Original entry on oeis.org

1, 4, 64, 2304, 147456, 14745600, 2123366400, 416179814400, 106542032486400, 34519618525593600, 13807847410237440000, 6682998146554920960000, 3849406932415634472960000, 2602199086312968903720960000, 2040124083669367620517232640000, 1836111675302430858465509376000000
Offset: 0

Views

Author

Keywords

Comments

Denominators in the series for Bessel's J0(x) = 1 - x^2/4 + x^4/64 - x^6/2304 + ...
a(n) is the unreduced numerator in Product_{k=1..n} (4*k^2)/(4*k^2-1), therefore a(n)/A079484(n) = Pi/2 as n -> oo. - Daniel Suteu, Dec 02 2016
From Zhi-Wei Sun, Jun 26 2022: (Start)
Conjecture: Let zeta be a primitive 2n+1-th root of unity. Then the permanent of the 2n X 2n matrix [m(j,k)]_{j,k=1..2n} is a(n)/(2n+1) = ((2n)!!)^2/(2n+1), where m(j,k) is 1 or (1+zeta^(j-k))/(1-zeta^(j-k)) according as j = k or not.
The determinant of the matrix [m(j,k)]_{j,k=1..2n} was shown to be (-1)^(n-1)*((2n)!!)^2/(2n(2n+1)) by Han Wang and Zhi-Wei Sun in 2022. (End)

References

  • Richard Bellman, A Brief Introduction to Theta Functions, Dover, 2013 (20.1).
  • Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th german ed. 1965, ch. 4.4.7
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 110.
  • E. L. Ince, Ordinary Differential Equations, Dover, NY, 1956; see p. 173.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 49 and 52, equations 49:6:1 and 52:6:2 at pages 483, 513.

Crossrefs

Programs

Formula

(-1)^n*a(n) is the coefficient of x^1 in Product_{k=0..2*n} (x+2*k-2*n). - Benoit Cloitre and Michael Somos, Nov 22 2002
E.g.f.: A(x) = arcsin(x)*sec(arcsin(x)). - Vladimir Kruchinin, Sep 12 2010
E.g.f.: arcsin(x)*sec(arcsin(x)) = arcsin(x)/sqrt(1-x^2) = x/G(0); G(k) = 2k*(x^2+1)+1-x^2*(2k+1)*(2k+2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2011
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (2*k+2)^2/(1-x/(x - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
From Ilya Gutkovskiy, Dec 02 2016: (Start)
a(n) ~ Pi*2^(2*n+1)*n^(2*n+1)/exp(2*n).
Sum_{n>=0} 1/a(n) = BesselI(0,1) = A197036. (End)
From Daniel Suteu, Dec 02 2016: (Start)
a(n) ~ 2^(2*n) * gamma(n+1/2) * gamma(n+3/2).
a(n) ~ Pi*(2*n+1)*(4*n^2-1)^n/exp(2*n). (End)
2*a(n)/(2*n+1)! = A101926(n) / A001803(n). - Daniel Suteu, Feb 03 2017
Limit_{n->oo} n*a(n)/((2n+1)!!)^2 = Pi/4. - Daniel Suteu, Nov 01 2017
Sum_{n>=0} (-1)^n/a(n) = BesselJ(0, 1) (A334380). - Amiram Eldar, Apr 09 2022
Limit_{n->oo} a(n) / (n * A001818(n)) = Pi. - Daniel Suteu, Apr 09 2022

A216702 a(n) = Product_{k=1..n} (16 - 4/k).

Original entry on oeis.org

1, 12, 168, 2464, 36960, 561792, 8614144, 132903936, 2060011008, 32044615680, 499896004608, 7816555708416, 122459372765184, 1921670157238272, 30197673899458560, 475110069351481344, 7482983592285831168, 117967035454858985472, 1861257670509997326336
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(16-4/k, k=1.. n), n=0..20);
    seq((4^n/n!)*product(4*k+3, k=0.. n-1), n=0..20);
  • Mathematica
    Table[Product[16-4/k,{k,n}],{n,0,20}] (* or *) CoefficientList[ Series[ 1/(1-16*x)^(3/4),{x,0,20}],x] (* Harvey P. Dale, Sep 19 2012 *)

Formula

G.f.: 1/(1-16*x)^(3/4). - Harvey P. Dale, Sep 19 2012
From Peter Bala, Sep 24 2023: (Start)
a(n) = 16^n * binomial(n - 1/4, n).
P-recursive: a(n) = 4*(4*n - 1)/n * a(n-1) with a(0) = 1. (End)
From Peter Bala, Mar 31 2024: (Start)
a(n) = (-16)^n * binomial(-3/4, n).
a(n) ~ 1/Gamma(3/4) * 16^n/n^(1/4).
E.g.f.: hypergeom([3/4], [1], 16*x).
a(n) = (16^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-3/4, k)* binomial(-3/4, 2*n - k).
(16^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = (16^n)/(2*n)! * Product_{k = 1..n} (4*k^2 - 1) = (16^n)/(2*n)! * A079484(n). (End)

A162448 Numerators of the column sums of the LG1 matrix.

Original entry on oeis.org

-11, 863, -215641, 41208059, -9038561117, 28141689013943, -2360298440602051, 3420015713873670001, -147239749512798268300237, 176556159649301309969405807, -178564975300377173768513546347
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The LG1 matrix coefficients are defined by LG1[2m,1] = 2*lambda(2m+1) for m = 1, 2, .. , and the recurrence relation LG1[2*m,n] = LG1[2*m-2,n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LG1[2*m,n-1]/(2*n-1) with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. , under the condition that n <= m. As usual lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function. For the LG2 matrix, the even counterpart of the LG1 matrix, see A008956.
These two formulas enable us to determine the values of the LG1[2*m,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, LG1[0,1] = gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the LG1 matrix, for m >= 1 and n >= 2, can be generated with GFL(z;n) = (hg(n)*CFN2(z;n)*GFL(z;n=1) + LAMBDA(z;n))/pg(n) with pg(n) = 6*(2*n-3)!!*(2*n-1)!!*A160476(n) and hg(n) = 6*A160476(n). For the CFN2(z;n) and the LAMBDA(z;n) see A160487.
The values of the column sums cs(n) = sum(LG1[2*m,n], m = 0.. infinity), for n >= 2, can be determined with the first Maple program. In this program we have made use of the remarkable fact that if we take LGx[2*m,n] = 2, for m >= 0, and LGx[ -2,n] = LG1[ -2,n] and assume that the recurrence relation remains the same we find that the column sums of this new matrix converge to the same values as the original cs(n).
The LG1[2*m,n] matrix coefficients can be generated with the second Maple program.
The LG1 matrix is related to the LS1 matrix, see A160487 and the formulas below.

Examples

			The first few generating functions GFL(z;n) are:
GFL(z;2) = (6*(z^2-1)*GFL(z;1)+(1))/18
GFL(z;3) = (60*(z^4-10*z^2+9)*GFL(z;1)+(-107+10*z^2))/2700
GFL(z;4) = (1260*(z^6-35*z^4+259*z^2-225)*GFL(z;1)+(59845-7497*z^2+210*z^4))/ 1984500
		

Crossrefs

See A162449 for the denominators of the column sums.
The LAMBDA(z, n) polynomials and the LS1 matrix lead to the Lambda triangle A160487.
The CFN2(z, n), the cfn2(n, k) and the LG2 matrix lead to A008956.
The pg(n) and hg(n) sequences lead to A160476.
The LG1[ -2, n] lead to A002197, A002198, A061549 and A001790.
Cf. A001620 (gamma) and A079484 ((2n-1)!!*(2n+1)!!).
Cf. A162440 (EG1 matrix), A162443 (BG1 matrix) and A162446 (ZG1 matrix)

Programs

  • Maple
    nmax := 12; mmax := nmax: for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1)+cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))*(-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1, n-k1), k1=1..n)/ (2*4^(n-1)*(2*n-1)!) od: for n from 1 to nmax do LG1[ -2, n] := (-1)^(n+1)*4*Delta(n-1)* 4^(2*n-2)/binomial(2*n-2, n-1) od: for n from 1 to nmax do LGx[ -2, n] := LG1[ -2, n] od: for m from 0 to mmax do LGx[2*m, 1] := 2 od: for n from 2 to nmax do for m from 0 to mmax do LGx[2*m, n] := LGx[2*m-2, n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LGx[2*m, n-1]/(2*n-1) od: od: for n from 2 to nmax do s(n) := 0; for m from 0 to mmax-1 do s(n) := s(n) + LGx[2*m, n] od: od: seq(s(n), n=2..nmax);
    # End program 1
    nmax1:=5; ncol:=3; Digits:=20: mmax1:=nmax1: for n from 0 to nmax1 do cfn2(n, 0):=1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for m from 1 to mmax1 do LG1[ -2*m, 1] := (((2^(2*m-1)-1)*bernoulli(2*m)/m)) od: LG1[0, 1] := evalf(gamma): for m from 2 to mmax1 do LG1[2*m-2, 1] := evalf(2*(1-2^(-2*m+1))*Zeta(2*m-1)) od: for m from -mmax1+ncol-1 to mmax1-1 do LG1[2*m, ncol] := sum((-1)^(k1+1)*cfn2(ncol-1, k1-1)* LG1[2*m-(2*ncol-2*k1), 1], k1=1..ncol)/(doublefactorial(2*ncol-3)*doublefactorial(2*ncol-1)) od;
    # End program 2
    # Maple programs edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = numer(cs(n)) and denom(cs(n)) = A162449(n).
with cs(n) = sum(LG1[2*m,n], m = 0 .. infinity) for n >= 2.
GFL(z;n) = sum( LG1[2*m,n]*z^(2*m-2),m=1..infinity)
GFL(z;n) = (LG1[ -2,n-1])/((2*n-3)*(2*n-1))+(z^2/((2*n-3)*(2*n-1))-(2*n-3)/(2*n-1))*GFL(z;n-1) with GFL(z;n=1) = -2*Psi(1-z)+Psi(1-(z/2))-(Pi/2)*tan(Pi*z/2)
LG1[ -2,n] = (-1)^(n+1)*4*(A061549(n-1)/A001790(n-1))*(A002197(n-1)/A002198(n-1))
LG1[2*m,n] = (4^(n-1)/((2*n-1)*binomial(2*n-2,n-1)))*LS1[2*m,n]

A316728 Number T(n,k) of permutations of {0,1,...,2n} with first element k whose sequence of ascents and descents forms a Dyck path; triangle T(n,k), n>=0, 0<=k<=2n, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 8, 7, 5, 2, 0, 172, 150, 121, 87, 52, 22, 0, 7296, 6440, 5464, 4411, 3337, 2306, 1380, 604, 0, 518324, 463578, 405024, 344260, 283073, 223333, 166856, 115250, 69772, 31238, 0, 55717312, 50416894, 44928220, 39348036, 33777456, 28318137, 23068057, 18117190, 13543456, 9409366, 5759740, 2620708, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 11 2018

Keywords

Examples

			T(2,0) = 8: 01432, 02143, 02431, 03142, 03241, 03421, 04132, 04231.
T(2,1) = 7: 12043, 12430, 13042, 13240, 13420, 14032, 14230.
T(2,2) = 5: 23041, 23140, 23410, 24031, 24130.
T(2,3) = 2: 34021, 34120.
T(2,4) = 0.
Triangle T(n,k) begins:
       1;
       1,      1,      0;
       8,      7,      5,      2,      0;
     172,    150,    121,     87,     52,     22,      0;
    7296,   6440,   5464,   4411,   3337,   2306,   1380,    604,     0;
  518324, 463578, 405024, 344260, 283073, 223333, 166856, 115250, 69772, 31238, 0;
		

Crossrefs

Column k=0 gives A303285.
Row sums and T(n+1,2n+1) give A177042.
T(n,n) gives A316727.
T(n+1,n) gives A316730.
T(n,2n) gives A000007.
Cf. A079484.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          `if`(t>0,   add(b(u-j, o+j-1, t-1), j=1..u), 0)+
          `if`(o+u>t, add(b(u+j-1, o-j, t+1), j=1..o), 0))
        end:
    T:= (n, k)-> b(k, 2*n-k, 0):
    seq(seq(T(n, k), k=0..2*n), n=0..8);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1,
         If[t > 0,     Sum[b[u - j, o + j - 1, t - 1], {j, 1, u}], 0] +
         If[o + u > t, Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}], 0]];
    T[n_, k_] := b[k, 2n - k, 0];
    Table[Table[T[n, k], {k, 0, 2n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..2n} T(n,k) = T(n+1,2n+1) = A177042(n).
Sum_{k=0..2n} (k+1) * T(n,k) = A079484(n).

A101928 E.g.f. cos(arcsinh(x)) = sin(arccosh(x)) (even powers only).

Original entry on oeis.org

1, -1, 5, -85, 3145, -204425, 20646925, -2993804125, 589779412625, -151573309044625, 49261325439503125, -19753791501240753125, 9580588878101765265625, -5527999782664718558265625, 3742455852864014463945828125, -2937827844498251354197475078125, 2646982887892924470131925045390625
Offset: 1

Views

Author

Ralf Stephan, Dec 28 2004

Keywords

Comments

Absolute values are expansion of e.g.f. cosh(arcsin(x)).

Examples

			cos(arcsinh(x)) = 1 - x^2/2 + 5x^4/4! - 85x^6/6! + 3145x^8/8! - ...
		

Crossrefs

Bisection of A006228.

Programs

  • Maple
    seq(coeff(series(factorial(n)*cos(arcsinh(x)), x,n+1),x,n),n=0..40,2); # Muniru A Asiru, Jul 22 2018
  • Mathematica
    Table[n!*SeriesCoefficient[Cos[ArcSinh[x]],{x,0,n}],{n,0,40,2}] (* Vaclav Kotesovec, Oct 23 2013 *)
    Flatten[{1, Table[(-1)^(n+1)*Product[4*k^2 + 1, {k, 1, n}], {n, 0, 12}]}] (* Vaclav Kotesovec, Oct 10 2016 *)

Formula

E.g.f.: cos(arcsinh(x)) = sqrt(1+x^2)*(1-x^2*(1-5*x^2/(G(0)+5*x^2))); G(k) = (k+2)*(2*k+3)-x^2*(2*k^2+6*k+5)+x^2*(k+2)*(2*k+3)*(2*k^2+10*k+13)/G(k+1);
For cosh(arcsin(x)) = sqrt(1-x^2)*(1 + x^2*(1 + 5*x^2/(G(0) - 5*x^2))); G(k) = x^2*(2*k^2+6*k+5) + (k+2)*(2*k+3) - x^2*(k+2)*(2*k+3)*(2*k^2+10*k+13)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 19 2011
G.f.: 1 - x*(1 + x*(G(0) - 1)/(x-1)) where G(k) = 1 + ((2*k+2)^2+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) ~ (-1)^(n+1) * sinh(Pi/2) * 2^(2*n-2) * n^(2*n-3) / exp(2*n). - Vaclav Kotesovec, Oct 23 2013
For n>1, a(n) = (-1)^(n+1) * A277354(n-2). - Vaclav Kotesovec, Oct 10 2016

A322230 E.g.f.: S(x,k) = Integral C(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows.

Original entry on oeis.org

1, 1, 2, 1, 28, 16, 1, 270, 1032, 272, 1, 2456, 36096, 52736, 7936, 1, 22138, 1035088, 4766048, 3646208, 353792, 1, 199284, 27426960, 319830400, 704357760, 330545664, 22368256, 1, 1793606, 702812568, 18598875760, 93989648000, 120536980224, 38188155904, 1903757312, 1, 16142512, 17753262208, 1002968825344, 10324483102720, 28745874079744, 24060789342208, 5488365862912, 209865342976, 1, 145282674, 445736371872, 51882638754240, 1013356176688128, 5416305638467584, 9498855414644736, 5590122715250688, 961530104709120, 29088885112832
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2018

Keywords

Comments

Equals a row reversal of triangle A325220.
Appears to be a row reversal of EG1 triangle A162005, which has other formulas.
Compare to sn(x,k) = Integral cn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060628).
Compare also to Michael Pawellek's generalized elliptic functions.

Examples

			E.g.f.: S(x,k) = x + (2*k^2 + 1)*x^3/3! + (16*k^4 + 28*k^2 + 1)*x^5/5! + (272*k^6 + 1032*k^4 + 270*k^2 + 1)*x^7/7! + (7936*k^8 + 52736*k^6 + 36096*k^4 + 2456*k^2 + 1)*x^9/9! + (353792*k^10 + 3646208*k^8 + 4766048*k^6 + 1035088*k^4 + 22138*k^2 + 1)*x^11/11! + (22368256*k^12 + 330545664*k^10 + 704357760*k^8 + 319830400*k^6 + 27426960*k^4 + 199284*k^2 + 1)*x^13/13! + ...
such that C(x,k)^2 - S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n+1)*k^(2*j)/(2*n+1)! in e.g.f. S(x,k) begins:
1;
1, 2;
1, 28, 16;
1, 270, 1032, 272;
1, 2456, 36096, 52736, 7936;
1, 22138, 1035088, 4766048, 3646208, 353792;
1, 199284, 27426960, 319830400, 704357760, 330545664, 22368256;
1, 1793606, 702812568, 18598875760, 93989648000, 120536980224, 38188155904, 1903757312;
1, 16142512, 17753262208, 1002968825344, 10324483102720, 28745874079744, 24060789342208, 5488365862912, 209865342976; ...
RELATED SERIES.
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (8*k^2 + 1)*x^4/4! + (136*k^4 + 88*k^2 + 1)*x^6/6! + (3968*k^6 + 6240*k^4 + 816*k^2 + 1)*x^8/8! + (176896*k^8 + 513536*k^6 + 195216*k^4 + 7376*k^2 + 1)*x^10/10! + (11184128*k^10 + 51880064*k^8 + 39572864*k^6 + 5352544*k^4 + 66424*k^2 + 1)*x^12/12! + (951878656*k^12 + 6453433344*k^10 + 8258202240*k^8 + 2458228480*k^6 + 139127640*k^4 + 597864*k^2 + 1)*x^14/14! + ...
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (5*k^4 + 4*k^2)*x^4/4! + (61*k^6 + 148*k^4 + 16*k^2)*x^6/6! + (1385*k^8 + 6744*k^6 + 2832*k^4 + 64*k^2)*x^8/8! + (50521*k^10 + 410456*k^8 + 383856*k^6 + 47936*k^4 + 256*k^2)*x^10/10! + (2702765*k^12 + 32947964*k^10 + 54480944*k^8 + 17142784*k^6 + 780544*k^4 + 1024*k^2)*x^12/12! + (199360981*k^14 + 3402510924*k^12 + 8760740640*k^10 + 5199585280*k^8 + 686711040*k^6 + 12555264*k^4 + 4096*k^2)*x^14/14! + ...
		

Crossrefs

Cf. A322231 (C), A322232 (D).
Cf. A325220 (row reversal), A162005.

Programs

  • PARI
    N=10;
    {S=x;C=1;D=1; for(i=1,2*N, S = intformal(C*D^2 +O(x^(2*N+1))); C = 1 + intformal(S*D^2); D = 1 + k^2*intformal(S*C*D));}
    for(n=0,N, for(j=0,n, print1( (2*n+1)!*polcoeff(polcoeff(S,2*n+1,x),2*j,k),", ")) ;print(""))

Formula

E.g.f. S = S(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n+1) * k^(2*j) / (2*n+1)!, along with related series C = C(x,k) and D = D(x,k), satisfies:
(1a) S = Integral C*D^2 dx.
(1b) C = 1 + Integral S*D^2 dx.
(1c) D = 1 + k^2 * Integral S*C*D dx.
(2a) C^2 - S^2 = 1.
(2b) D^2 - k^2*S^2 = 1.
(3a) C + S = exp( Integral D^2 dx ).
(3b) D + k*S = exp( k * Integral C*D dx ).
(4a) S = sinh( Integral D^2 dx ).
(4b) S = sinh( k * Integral C*D dx ) / k.
(4c) C = cosh( Integral D^2 dx ).
(4d) D = cosh( k * Integral C*D dx ).
(5a) d/dx S = C*D^2.
(5b) d/dx C = S*D^2.
(5c) d/dx D = k^2 * S*C*D.
From Paul D. Hanna, Mar 31 2019, Apr 20 2019 (Start):
Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
(6a) S = -i * sn( i * Integral D dx, k),
(6b) C = cn( i * Integral D dx, k),
(6c) D = dn( i * Integral D dx, k).
(7a) S = sc( Integral D dx, k') = sn(Integral D dx, k')/cn(Integral D dx, k'),
(7b) C = nc( Integral D dx, k') = 1/cn(Integral D dx, k'),
(7c) D = dc( Integral D dx, k') = dn(Integral D dx, k')/cn(Integral D dx, k'). (End)
Row sums equal (2*n+1)!*(2*n)!/(n!^2*4^n) = A079484(n), the product of two consecutive odd double factorials.
Main diagonal equals A000182, the tangent numbers.

A325220 E.g.f.: S(x,k) = -i * sn( i * Integral C(x,k) dx, k) such that C(x,k) = cn( i * Integral C(x,k) dx, k), where S(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n+1)*k^(2*j)/(2*n+1)!, as a triangle of coefficients T(n,j) read by rows.

Original entry on oeis.org

1, 2, 1, 16, 28, 1, 272, 1032, 270, 1, 7936, 52736, 36096, 2456, 1, 353792, 3646208, 4766048, 1035088, 22138, 1, 22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1, 1903757312, 38188155904, 120536980224, 93989648000, 18598875760, 702812568, 1793606, 1, 209865342976, 5488365862912, 24060789342208, 28745874079744, 10324483102720, 1002968825344, 17753262208, 16142512, 1, 29088885112832, 961530104709120, 5590122715250688, 9498855414644736, 5416305638467584, 1013356176688128, 51882638754240, 445736371872, 145282674, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 13 2019

Keywords

Comments

Equals a row reversal of triangle A322230.
Appears to equal EG1 triangle A162005, which has other formulas.
Compare to sn(x,k) = Integral cn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060628).

Examples

			E.g.f.: S(x,k) = x + (2 + 1*k^2)*x^3/3! + (16 + 28*k^2 + 1*k^4)*x^5/5! + (272 + 1032*k^2 + 270*k^4 + 1*k^6)*x^7/7! + (7936 + 52736*k^2 + 36096*k^4 + 2456*k^6 + 1*k^8)*x^9/9! + (353792 + 3646208*k^2 + 4766048*k^4 + 1035088*k^6 + 22138*k^8 + 1*k^10)*x^11/11! + (22368256 + 330545664*k^2 + 704357760*k^4 + 319830400*k^6 + 27426960*k^8 + 199284*k^10 + 1*k^12)*x^13/13! + (1903757312 + 38188155904*k^2 + 120536980224*k^4 + 93989648000*k^6 + 18598875760*k^8 + 702812568*k^10 + 1793606*k^12 + 1*k^14)*x^15/15! + ...
such that S(x,k) = cn( i * Integral C(x,k) dx, k) and C(x,k)^2 - S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n+1)*k^(2*j)/(2*n+1)! in e.g.f. S(x,k) begins:
1;
2, 1;
16, 28, 1;
272, 1032, 270, 1;
7936, 52736, 36096, 2456, 1;
353792, 3646208, 4766048, 1035088, 22138, 1;
22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1;
1903757312, 38188155904, 120536980224, 93989648000, 18598875760, 702812568, 1793606, 1;
209865342976, 5488365862912, 24060789342208, 28745874079744, 10324483102720, 1002968825344, 17753262208, 16142512, 1;
29088885112832, 961530104709120, 5590122715250688, 9498855414644736, 5416305638467584, 1013356176688128, 51882638754240, 445736371872, 145282674, 1; ...
RELATED SERIES.
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (5 + 4*k^2)*x^4/4! + (61 + 148*k^2 + 16*k^4)*x^6/6! + (1385 + 6744*k^2 + 2832*k^4 + 64*k^6)*x^8/8! + (50521 + 410456*k^2 + 383856*k^4 + 47936*k^6 + 256*k^8)*x^10/10! + (2702765 + 32947964*k^2 + 54480944*k^4 + 17142784*k^6 + 780544*k^8 + 1024*k^10)*x^12/12! + (199360981 + 3402510924*k^2 + 8760740640*k^4 + 5199585280*k^6 + 686711040*k^8 + 12555264*k^10 + 4096*k^12)*x^14/14! + ...
which also satisfies C(x,k) = cn( i * Integral C(x,k) dx, k).
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (8*k^2 + 1*k^4)*x^4/4! + (136*k^2 + 88*k^4 + 1*k^6)*x^6/6! + (3968*k^2 + 6240*k^4 + 816*k^6 + 1*k^8)*x^8/8! + (176896*k^2 + 513536*k^4 + 195216*k^6 + 7376*k^8 + 1*k^10)*x^10/10! + (11184128*k^2 + 51880064*k^4 + 39572864*k^6 + 5352544*k^8 + 66424*k^10 + 1*k^12)*x^12/12! + (951878656*k^2 + 6453433344*k^4 + 8258202240*k^6 + 2458228480*k^8 + 139127640*k^10 + 597864*k^12 + 1*k^14)*x^14/14! + ...
		

Crossrefs

Cf. A325221 (C), A325222 (D).
Cf. A322230 (row reversal), A162005.

Programs

  • PARI
    N=10;
    {S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C^2*D +O(x^(2*N+1))); C = 1 + intformal(S*C*D); D = 1 + k^2*intformal(S*C^2)); }
    {T(n,j) = (2*n+1)!*polcoeff(polcoeff(S, 2*n+1, x), 2*j, k)}
    for(n=0, N, for(j=0, n, print1( T(n,j), ", ")) ; print(""))

Formula

E.g.f. S = S(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n+1)*k^(2*j)/(2*n+1)!, along with related series C = C(x,k) and D = D(x,k), satisfies:
(1a) S = Integral C^2*D dx.
(1b) C = 1 + Integral S*C*D dx.
(1c) D = 1 + k^2 * Integral S*C^2 dx.
(2a) C^2 - S^2 = 1.
(2b) D^2 - k^2*S^2 = 1.
(3a) C + S = exp( Integral C*D dx ).
(3b) D + k*S = exp( k * Integral C^2 dx ).
(4a) S = sinh( Integral C*D dx ).
(4b) S = sinh( k * Integral C^2 dx ) / k.
(4c) C = cosh( Integral C*D dx ).
(4d) D = cosh( k * Integral C^2 dx ).
(5a) d/dx S = C^2*D.
(5b) d/dx C = S*C*D.
(5c) d/dx D = k^2 * S*C^2.
Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
(6a) S = -i * sn( i * Integral C dx, k),
(6b) C = cn( i * Integral C dx, k),
(6c) D = dn( i * Integral C dx, k).
(7a) S = sc( Integral C dx, k') = sn(Integral C dx, k')/cn(Integral C dx, k'),
(7b) C = nc( Integral C dx, k') = 1/cn(Integral C dx, k'),
(7c) D = dc( Integral C dx, k') = dn(Integral C dx, k')/cn(Integral C dx, k').
Row sums equal (2*n+1)!*(2*n)!/(n!^2*4^n) = A079484(n), the product of two consecutive odd double factorials.
Column T(n,0) = A000182(n), where A000182 is the tangent numbers.

A331616 E.g.f.: exp(1 / (1 - arcsinh(x)) - 1).

Original entry on oeis.org

1, 1, 3, 12, 61, 380, 2783, 23240, 217817, 2267472, 25924827, 322257408, 4325450325, 62374428480, 961296291447, 15754664717184, 273537984529713, 5016337928401152, 96871316157146163, 1964030207217042432, 41706446669511523821, 925774982414999202816
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Comments

a(257) is negative. - Vaclav Kotesovec, Jan 26 2020

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[1/(1 - ArcSinh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    A296675[0] = 1; A296675[n_] := A296675[n] = Sum[Binomial[n, k] If[OddQ[k], (-1)^Boole[IntegerQ[(k + 1)/4]] ((k - 2)!!)^2, 0] A296675[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A296675[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
  • PARI
    seq(n)={Vec(serlaplace(exp(1/(1 - asinh(x + O(x*x^n))) - 1)))} \\ Andrew Howroyd, Jan 22 2020

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A296675(k) * a(n-k).
a(n) ~ 8*(-4*Pi*cos(Pi*(n - 4/(4 + Pi^2))/2) - (Pi^2 - 4)*sin(Pi*(n - 4/(4 + Pi^2))/2)) * n^(n-1) / ((4 + Pi^2)^2 * exp(n + 1 - 4/(4 + Pi^2))). - Vaclav Kotesovec, Jan 26 2020
Showing 1-10 of 21 results. Next